
i •

i;

NASA Contractor Report 195388

; "7" " 7::'_3
./ (+ _:;:_ ,1

i;.i.ii̧ I_

i i

Reusable Rocket Engine Turbopump

Health Management System

Pamela Surko

Science Applications International Corporation

San Diego, California

• i

,i__ _

:i

October 1994

Prepared for
Lewis Research Center

Under Contract NAS3-25882

National Aeronautics and

Space Administration

(NASA-CR-I95388) REUSABLE ROCKET

ENGINE TURBOPUMP HEALTH MANAGEMENT

SYSTEM Final Report (Science

Applications International Corp.)

91p

GS/Z0

N95-I5058

Unclas

0031413

Table of Contents

Table of Contents

SECTION 1 - INTRODUCTION 1

POST TEST DIAGNOSTIC SYSTEM ... 1

UNDERLYING ANALYSIS ASSUMPTIONS ... 1

MODULARLZING THE REASONING ... 2

SECTION 2 ARCHITECTURAL FRAMEWORK 3

ARCHITECTURAL OVERVIEW 3

SESSION MANAGER OVERVIEW .. 4

DATABASE SCHEMA OVERVIEW ... 4

EXPERT MODULES OVERVIEW .. 5

REASONING STRATEGIES .. 6

STORING EXPERT SYSTEM RESULTS .. 8

USER INTERFACE OVERVIEW
...

SECTION 3 - SESSION MANAGER 9

DATABASE SCHEMA
...

ADDING A NEW MODULE .. 14

FLOW OF CONTROL •... 15

SECTION 4 - FEATURE EXTRACTOR 16

OVERVIEW ... 16

MAIN DRIVER ... 17

FEATURE EXTRACTION MODULES .. 20

ERRATIC (FINDERRATICB EHAVIOUR) ... 23

/
SPIKE (FINDSPIKE) .. 23

LEVEL SHIFT (FINDLEVELSHIFT) ... 24

L ¸ (_/:

Table of Contents

PEAK (FINDPEAK) .. 24

DIFFERENT THAN (DELTADIFFEREN'I'FHAN) ... 26

REDLINE CHECK (REDLINECHECK) ... 28

DELTA LEVEL SHIFT (DELTALEVELSHIFT) ..29

BALANCE PISTON COMPARISON (BALANCEPISTONCOMPARE) 29

BISTABILITY (FINDBISTABLE) .. 30

CONCLUSIONS .. 30

SECTION 5 - EXPERT MODULES 31

OVERVIEW
... ° ° °° ° °,°°°°°°°°°o°°°°31

BISTABILITY .. 32

BALANCE PISTON .. 32

THREE SENSOR REDUNDUNCY ... 33

TWO SENSOR REDUNDANCY .. 33

SIMILAR TURBINE DISCHARGE TEMPERATURE SENSORS 33

SEALS - COMPARING PRESSURE AND TEMPERATURE 34

TURBINE SEALS - COMPARING PRESSURE TO PREVIOUS TEST 34

PRIMARY TURBINE PRESSURE PEAK AND EQUILIBRIUM CHECKS 34

PRIMARY PUMP SEAL ... 35

SECONDARY TURBINE SEAL CAVITY PRESSURE 35

INTERMEDIATE SEAL PURGE PRESSURE ... 35

SHUTDOWN CHECKS ... 35

PREBURNER PUMP BISTABILITY ... 36

I_DLINE VIOLATIONS ... 36

SECTION 6 - GRAPHICAL USER INTERFACE 37

INTRODUCTION ... 37

WINDOW HIERARCHY ORGANIZATION .. 37

ALTERING THE USER INTERFACE ... 37

,!i ! ,

. , i ¸ •,

• • :_ •i ¸ •

ii i i

Table of Contents

MAIN SCREEN HIGHLIGHTING ... 38

PID PLACEMENT AND HIGHLIGHTING ... 38

SECTION 7 - DATABASE DESIGN 40

INTRODUCTION 40
• •......• •.•..............•••

GENERAL TEST INFORMATION
•""'" "" "'--'-'-"-"-" 41

SECTION 8 - IMPLEMENTATION 43

HARDWARE SYSTEM .. 43

COMMERCIAL SOFTWARE PACKAGES AND LANGUAGES 43

SIZE OF THE SYSTEM .. 44

SECTION 9 - ANOMALY DATABASE 45

SYSTEM REQUIREMENTS .. 46

OVERVIEW .. 47

A GLANCE AT GRAPHICAL USER INTERFACES ... 47

INVOKING THE ANOMALY DATABASE .. 47

THE ORGANIZATION OF AN ANOMALY DATABASE WINDOW 48

FIELDS
• '''• • • " • •''" • •48

OTHER WINDOW ATTRIBUTES ... 48

BROWSING THE DATABASE ... 48

PREPARING THE QUERY
.................. •" """---'" •.... •.... •.•..........•.........49

TEST NUMBER ... 50

TEST DATE ...
........ " " ".)• 50

ENGINE NUMBER ... 50

ANOMALY TITLE- LOCATION
............... " •''•o..50

ANOMALY TITLE -TYPE ... 51

ANOMALY TITLE - SENSOR TYPE .. 51

TEST PHASE ... 51

ENGINE FLT/DEV .. i 51

__'_:_? i'¸''"i,_i̧_I ! -

_ i_i::̧ •! ¸'

:iii_:iiiii_II_I_

Table of Contents

LRU FLT/DEV .. 51

SPEC VIOLATION ... 51

USER INFO
........ ° °°'° ° " °'°,oooooo,oo°52

SUBMITTING THE REQUEST .. 52

ERROR MESSAGES .. 52

EXAMINING THE RESULTS ... 52

VIEWING PID DATA
............... ° " ° °°°53

PRINTING AN ANOMALY
... 3

UPDATING THE DATABASE
... 4

THE ADD COMMAND ... 54

SHORT ENTRY FIELDS
.. ° 54

FREE FORM TEXT WINDOWS .. 54

FORMATI"ING THE ANOMALY TO BE ADDED .. 55

TEST_ID AND OTHER FIXED FIELDS ... 55

ANOMALY LOCATION, TYPE, AND PROBLEM ... 55

POWER LEVE ... 56

TEST PHASE, ENGINE FLT/DEV, LRU FLT/DEV .. 56

SPEC VIOLATION ... 56

ASSESSMENT, ANALYSIS RESULTS, ACTIONS TAKEN 56

ANOMALY TIME, ANOMALY DURATION ... 56

PID INFO .. 56

VIEWING DATA TO AID IN THE STORAGE DECISION 57

SAVING THE GRAPHICAL DATA .. 57

USER INFORMATION ... 57

SUBMITTING THE "ADD" REQUEST .. 58

THE MODIFY COMMAND ... 58

IDENTIFYING THE ANOMALY FOR MODI_"ICATION 58

L(?•!ii

: i , : _

k !: i

Table of Contents

CHANGING CONTENTS OF FIELDS
.. ° ,..°..,58

SHORT ENTRY HELDS
"''*" ''*'°°'°°'**''" * *°'''°''''*'''°'°'* *'''°'''''" "-°,,° -°*,°.58

MENU BU I'FONS.
......... "" *" ' " * ,.°......59

LONG TEXT FIELDS 59
........... • ...o.°., **.,...... ,...,.° °.

REPLACE THE MODIFIED ANOMALY ... 59

THE DELETE COMMAND
... 59

IDENTIFYING THE ANOMALY TO BE DELETED ... 60

DELETING THE IDENTIFIED ANOMALY .. 60

ADMINISTERING THE DATABASE .. 60

TABLE DESIGN AND LOCATION ... 60

MANAGING DATABASE SIZE
.. 61

MENU ITEM TABLES .. 61

ANOM_SPECVIOL
... 2

ANOM SENSORTYPE ... 62

ANOM_TESTPHASES
.. • 62

ANOM PROBDESCR
.. 3

ADDING MENU ITEMS
... 6

EFFECT ON THE DATABASE OF MODIFYING MENUS 67

OTHER ADMINISTRATIVE ISSUES ... 68

CONCLUSION
.......... " ... *'''* * • °.68

APPENDIX A - EXTENDING THE SYSTEM I

ADDING TO THE COMMAND TABLE .. I

ADDING A NEW FEATURE EXTRACTION MODULE I

APPENDIX B - TABLES III.....

APPENDIX C - GUI FEATURES X V

ii _i_ _i_ •__.'__i_-_i___!i!_,_i_,_i__'_i__,__ii_,_!____,i,_,__

Introduction 1

Section 1 -Introduction

A health monitoring expert system software architecture has been developed to

support condition-based health monitoring of rocket engines. Its first application is
in the diagnosis decisions relating to the health of the high pressure oxidizer

turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic
system runs off-line, using as input the data recorded from hundreds of sensors, each

running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has

been completed, and produces an analysis and an organized graphical presentation of

the data with important effects highlighted. The overall expert system architecture

has been developed and documented so that expert modules analyzing other line

replaceable units may easily be added. The architecture emphasizes modularity,

reusability, and open system interfaces so that it may be used to analyze other enginesas well.

Post Test Diagnostic System

The Post Test Diagnostic System (PTDS) aids engineers who are responsible for

detecting and diagnosing engine anomalies from sensor data, by providing a
consistent, fast first-pass data analysis. The analytical methods used by PTDS are

modeled after these engineers' analysis strategies. The modular architecture has both

procedural and non procedural knowledge-based components. This combination

allows for the inclusion of conventional algorithms as well as heuristic expert

information. Currently, this architecture has been implemented with the expert
modules that analyze some aspects of HPOTP behavior.

Underlying Analysis Assumptions

All data being analyzed is time series data. Most cases involve examining the time
dependent behavior of a single sensor, the difference between two sensors, or in some

cases, a simple function of two to four sensors. Interaction between cooperating
expert modules must incorporate time-dependence of features. Therefore the

underlying strategies for handling and evaluating time series data must be carefully
articulated, in order for new modules to be integrated into the system. In particular, a

large system such as PTDS can grow too complex if care is not taken to provide only
functionality that is essential. Therefore, a simple representation of time dependence

that still has sufficient power for this domain was chosen. The system allows multiple

Science Applications International Corporation

i ¸ •

iI ":il _'

i ¸ •., _'

snapshots of the domain at different times, explicitly handling points in time

(snapshot times) and time intervals. It also handles specific time dependence over an
interval of an individual sensor trace.

Modularizing the Reasoning

In order to make much of the system reusable, we chose to divide the reasoning about

sensor traces into two main categories. First, sensor traces are examined for
"features" in their time series, such as peaks, spikes, level shifts, and the likeo The

number of features necessary to be identified for HPOTP analysis is relatively small.

We anticipate that these features will be useful also for much of the reasoning for

other LRU analysis. If other features are necessary for differing analyses, it is
straightforward, given the architecture, to add modules for each new feature desired.

After features have been identified and written to a database table, the rules perform
the analysis work with the features, rather than with the individual data points or time

series arrays. This split both manages the complexity of the analysis, and keeps the

run time performance high. Since the features maintain their time dependence as

parameters of the features, the reasoning process can treat time dependence with the
full sophistication necessary. Features may be determined to be earlier or later than

another, simultaneous, overlapping, or one feature may be encompassed in time by
another. Features also have unique parameters such as height or width.

i_ _ •

i :. ,_:i•i'•i '

i :"t: " ;

Science Applications International Corporation

?
/, _%,

: , ;:: ,

i/i _ :"

Section 2

Architectural Framework 3

Architectural Framework

The Post Test Diagnostic System operates off line and with minimal user assistance.

The system requires notification that a new test data set has arrived, and the input of

several unit numbers of the engine Line Replaceable Units (LRU) being tested. The

PTDS analyzes the data and prepares a results table for inspection by the data

analysts. This process is typically conducted overnight and is ready for the data
analyst in the morning.

Architectural Overview

Manager

Load Eeaature Extractor 'Nexpert

Data Files J Static Knowledge

Features

User Interface

Figure 2.1: Archfecture Overview

The data analysis process is implemented using the architecture shown in Figure 2-1.
The controlling module is the "session manager". This UNIX process schedules and

controls the loading of numerical data from unstructured binary files into the
relational database management system (RDBMS), runs the feature extraction

routines, and coordinates the expert modules. The expert modules reason using the

features, static knowledge such as limits and expected noise levels contained in tables,

and the knowledge contained in the rules. The user interface is a separate process,

K-_t_iC:,t?¢'_.<:, ," ' '
"" /'{DOfiCL_tiOt?S #Tt_t77c3_iO.q2, i, CofpoFJ_tion

i • •

, S _'_

:__!ii__._,i!_

Architectural Framework 4

which queries the results, features, and raw numerical data tables, to provide an
intelligent display of the results.

Each segment of the system is described in detail in its own chapter. Following is a
brief overview of each segment.

Session Manager Overview

The session manager controls the flow of data and the expert modules that analyze
the data. It manages the execution of the expert modules by inspecting a resource

table maintained in the RDBMS, to determine whether the prerequisites for an expert
module have successfully been completed, and if so, then invoking the expert module

as an independent UNIX process. This allows individual expert modules to be written

in different languages, and gives individual expert module developers maximum
flexibility.

A very simple mechanism for allowing modules to interact with each other has been

implemented. A module can request information from other modules by writing to
an RDBMS table which functions as the PTDS blackboard. If a request is written to

the blackboard, the session manager re invokes the requested module, then re invokes

the requester. All modules are responsible for inspecting the blackboard when they
are invoked. To avoid deadlock, a module is required to be reinvoked before it can

read the blackboard, and to avoid looping, each module can not be invoked more
than twice, an arbitrary but satisfactory limit.

Database Schema Overview

i¸¸ , , _•

ii' i _:_

H

The test data is managed in an ssme data Ingres database, even though the official
archiving of the numerical data is d_ne elsewhere, using binary files. The RDBMS

implementation strategy was chosen to ensure a robust system and to ease the porting
of the system to the analysis of other engines. The features of data security, user
privileges, checkpointing, and backup were provided by the commercial software and

therefore could be eliminated from the custom software development.

The table test info contains one record per test, and has all the data that appears
once per test, such as test number, data and time of day of the test, LRU unit numbers
being tested, and the length of the test.

The table pid._info contains one record per sensor, per test. Its fields store the

sensor information for each test. A record contains the parameter identification

number (PID), a description of what the PID is measuring on this test, the engineering

..... ,_,,_,_._.o.,,, ;... i_.7,,es._.._ai.._t..,ai CofL_o,-_:_#or;

Architectural Framework 5

'i: !::::,:,:i̧::

:ii:i I

units, the sensor type, error bar information, one-second averages, and the sampling
rate, typically 25, 50, or. 1 Hz. The final table named for the test numbers contains

the numerical data for all sensors in a particular test.

The table structure was chosen to optimize the speed of two types of queries: more

important, the queries done by the user interface to retrieve data for display to the
user; and second, the types of queries done by the feature extractor for its work. The
feature extractor queries the database more often than does the user interface. This

module operates in batch mode, with typical response times taking a few minutes.

Since these types of queries are performed before the data analysts arrive, subsecond

response times are not necessary, however, the addition of many more sensors may
have an impact on future response times. The queries required by the user interface

retrieve and graphically display data while the analyst waits, therefore display time in
this case is crucial.

The time required to load the test data ranges from 20 minutes to more than an hour,

depending on the length of the test firing. This loading time is slow, but since it is

done ovemight in batch mode, decreasing the load time was not necessary. A typical

engine test totals 20-60 Mbytes, depending on the length of the test. Currently the
system has 10-20 recent test firings resident in the. database. The number of tests

available on-line is limited by the space available on the database file system.

The RDBMS also manages feature tables, which store the intermediate results from

curve fitting and other algorithmic analysis done on the numerical time series data;

limits tables, which store limits used in feature detection and reasoning; and results

tables, which contain the observations to be displayed to the user, and instructions for

formatting the graphical displays to support those observations. The session manager

has its own small database of tables containing instructions for managing the feature

extraction process and tables of prerequisites for each process, allowing the session
manager to be written without knowledge embedded into it of what order the various

modules should be invoked, or what files or tables need to be present in order for

them to function correctly. Since modules may be added throughout the lifetime of
PTDS, the session manager must be as generic as possible.

Expert Modules Overview

One group of expert modules has currently been implemented. These modules

analyze the seals, balance piston, and prebumer pump bistability of the High Pressure
Oxidizer TurboPump. The expert knowledge for the analyses is resident in three

places: first, the list of which features to search for in which sensor traces; second, the

tables storing the knowledge which does not change from test to test, used by the rules
to define limits, allowed variability, expected noise levels, and the like; and third, the

: " " "'" " ,_-.,,_;,_..,:_,_.,,,,;..qTtO!T_._iT{.)F_E.U''"_":'v'r;:'t;,',,'__SCf.5".':_C_._/ _''.:'_a''''*',',':-' ' ' " t.,,u,._,,._.,_..,,

Architectural Framework 6

knowledge embedded in the rules themselves. All numerical static knowledge is
stored in RDBMS tables, rather than being hardcoded into rules or algorithmic code,

to allow for ease of expansion and transfer° it is especially valuable to plan for

maintainability in expert system development, since experts who have previously
judged effects only by eye, using available hard copy graphs, may wish to try several
values for bounding values.

Reasoning Strategies

The system reasons about whether two engine effects, as manifested in different

sensors, may be related to a common cause or to each other, based on the time

behavior of each occurrence. Also, PTDS reasons about the internal time structure of

a single sensor signal by characterizing signals as "erratic", "spike", "peak", or
"level_shift." Currently time dependence is implemented with one data structure

(class), the feature, whose time-management properties are often simply start time and

duration. Some features, such as asymmetric peaks in a time plot, have more complex
time dependence, and the system carries the time of the maximum, and of both full-

width-half-max points. Features are generated for all events of interest in the raw

sensor data. Events are time-compared to other events using only the relations

• before

• simultaneous_with

• during

• overlapping.

Nearly all reasoning done by expert modules can be done with an appropriate set of

features, rather than the full numerical data set. For efficiency's sake, the expert
system does not reason directly about the individual data points, but about the
features the experts have identified as important in the data. First, individual sensor

traces are examined for expected behaviors, and a small set of useful curve-fitting
routines are run to identify events in the time series data that are recorded as features.

Only a small number of features are necessary to characterize most of the behaviors

the expert system must analyze, such as "peak", "spike", "fiat", "level shift",

"different than" (comparing two traces) and "erratic behavior." The features are

written to a database table and these, rather than raw sensor numerical data, are used as

the symbols about which the expert modules reason. The expert module can then
reason about features.

Two analysis strategies used by experts are used in the expert system. The current test

is compared to results from a previous test to note unexplained differences, and the

current test is also examined for evidence of a specified set of problems.

In searching for unexpected areas of change in the behavior of the turbopump

Architectural Framework 7

between the current test and a previous one, one would hope to compare the current

test to the previous test running the same turbopump. This would be relatively simple,
were it not for the fact that rarely are the operating conditions identical for two tests.

The thrust profiles or the tank pressurization profiles may differ. The presence of a
different low pressure turbopump, a different fuel turbopump or a different fuel/LOX

mixture ratio will affect the operation of the HPOTP. In comparing two tests, each test

is segmented into periods of constant thrust, by extracting level-change features on

the thrust sensors, to identify the intervals at which the thrust was changing, and then

identifying the time intervals between those thrust changes as periods of constant

thrust. Each period of constant thrust is tagged with the actual value of thrust during
that period, so that when comparing traces that should be the same within tolerances,

comparisons are only done during periods of relative engine equilibrium, under
similar thrust conditions. Thrust is the main driver of expected differences between

tests. Rules have been designed but not yet implemented, to manage differences in
tank pressurization as well.

An important piece of knowledge in doing test-to-test comparisons is the knowledge
of which previous test should be used in the comparison. Each expert module makes

its own determination of which previous test to use in current/previous comparisons.

LRUs are swapped fairly often. For example, if the most recent previous test used the

same HPOTP as the current test, but a different fuel turbopump, the system might

choose that test for HPOTP comparison analysis, but choose the most recent test using

the same fuel turbopump for a fuel turbopump analysis. In HPOTP analysis, the
decision is made based on half a dozen criteria, with differing priorities. The system
first searches for the most recent previous test on the same test stand, with the same

engine, and the same HPOTP. Quite a number of rules handle the cases where not all

the criteria are met. In order for the system to make best use of previous test data in

doing these test-to-test comparisons, tests are analyzed in chronological order.

PTDS discards expected differences, and reports unexpected differences. This

strategy reports unexplained new behavior of a pump without requiring knowledge of
what caused that difference. Problems never before observed are detected, even

though specific diagnostic rules for the anomaly are not present.

In the second reasoning strategy, using data from the current test only, several types
of reasoning are done. One type exploits the limited redundancy available in the

sensor data, by comparing both sensors to a previous test, if they differ, and assuming
that if only one disagrees, that the physical quantity being measured agrees with the

previous test and that one disagreeing sensor is faulty. If a parameter is sensed by
only one sensor, then the dual hypotheses of actual physical change and sensor

failure are made, unless other constraining evidence is available. The majority of the

expert system rules treat the diagnosis of particular failure modes. For example, the
balance piston module searches for various patterns and correlations in the traces

from the two pressure sensors monitoring the pressures providing restoring forces for

Architectural Framework 8

the pump impeller. Spikes or level shifts in both pressures mean possible anomalies

in the axial position of the impeller shaft. Spikes or level shifts in one pressure only
imply different problems, and the relative sign of the spikes or level shifts give further

clues as to what anomalies occurred. The system reports the unexpected feature it

detected, and groups them where possible under a common root cause ("possible
damage to a high pressure orifice").

Storing Expert System Results

For each anomaly, a record is written by the expert module detecting it to the results

table of the ssme_data database. This table is accessed by the user interface when a
user logs in to view the results of a test.

Using the Ingres table as a cache for results allows expert modules to be added to the

system without requiring extensive changes to the user interface. The features for a

test are also written to the features table by the feature extractor module, which runs
before the expert modules.

When old tests are deleted from the database to release space, the features and results
for that test are not deleted. Only the large numerical data table is deleted. This

allows PTDS to return to older tests if they are appropriate for previous-test

comparison. This does eliminate the ability to plot data or supporting data from the
deleted tests, however.

User Interface Overview

The point-and-click color user interface allows the data analyst to view PTDS

observations and supporting graphs. When the user invokes the system, the first

window lists the tests residing in the system, and allows the user to sequentially choose

the desired tests. An active engine diagram is offered, with engine LRUs highlighted
if the expert module analyzing that LRU has detected anomalies. The user selects an

LRU, highlighted or not, to see a display of the detailed schematic of that LRU

annotated with PIDs and the observations associated with the LRU. If an anomaly is

present in any PID, its label on the schematic is highlighted in color. By choosing a

PID label or an anomaly line, the analyst displays the related time series data graphs.

PTDS scales the data to highlight the important time segment, as well as displaying the

supporting graphs often consulted by experts that show general engine conditions.

Science/-".,_)_ohcatior;s ¢ntema_;'or,.ai Co;_o,::.._tion

• _, 'L.!k ¸ ,_%•• • • : •

Session Manager 9

i i <, _i,,/

, :iiI Section 3- Session Manager

The session manager is the overall controller and job scheduler for the system as a

whole. It is table driven where possible, so that additions and changes made to the
system can be made easily using the RDBMS commands.

The session managers begins after an operator finishes entering data that is required
by the PTDS, and which is not available in machine readable format, via use of a data

entry screen. This data includes the test ID, and the numbers assigned to the LRU's
on the engine.

The session manager utilizes tables that specify the tasks that need to be run and the

resource required by that task. In many instances, a specific task cannot begin until

previous tasks have completed. For example, the feature extractor task cannot begin

until the Ingres tasks f_load and e load have successfully completed loading the
data.

By setting up a table that specifies only the prerequisites for each task, rather than a

rigid ordering, we prevent the situation where a single minor error may unnecessarily

stop the execution chain of the entire system. Instead, the system attempts to do all

the tasks that may appropriately be done, given the previous tasks that completed
successfully.

Database Schema

An overview of the database tables used by the session manager are shown in Figure

3-1. These tables are kept separate from the test data itself, in a separate database
called se ssion_mgr.

Science Appfications International Corporation

: 11 _/_ _ V-_

. i

/ ¸¸ L

Session Manager 10

Resource_List

Prerequisites

Id prel pre2 pre3 pre4 pre5 pre6 pre7 pre8 pre9 prelO

1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

9 -1 -1 -1 -1 -1 -1 -1 I -1 -1

Resource_Board

test_id rO rl r2 r3 r4 r5 r6 r7 r8 r9

A10001 65 0 0 0 0 O 0 0 0 0

A10002 65 0 0 0 0 O O 0 0 0

Alnnn_ q rl n rl _1 1"1 fl , fl n I fl

Job

module test id

dbload a,10003

Figure 3-1: Overview of database tables in the session_mgr database.

The Resource_List table shown in more detail in Figure 3-2, simply provides

positive integer indices for each resource. Resources for a given module may be
executable modules that must run to completion to provide the given module with
necessary inputs.

Science Appfications International Corporation

• i ¸ '

i i _

Session Manager

Resource_Ust

Id name

0 data _rnv_!

1 dhlnnd

2' fe_aturP_

hnn_'n

displayable whatif

h'

Y

id

name

diSl:)layable

whatif

INGRES Variable Tvo9

integer1

varchar(20)

char(1)

char(l)

comment
non-nega0ve integer
(0- 127)

resource name

'Y" signifies resource

appears =n user interface

resource status

'Y' sigmhes resource

appears =n user interface

whatd module

11

Figure 3-2: Schema of the Resource_List Table of the session_mgr database

The entry in the field displayable, of type char(l), is used to tell the user interface

process which resources should be displayed, by test id, on the test status board. The

test status board is shown in the top half of the initial window of the user interface. A

Y indicates the resource should be displayed.

The Whatif field, also of type char(l), is used by the user interface to distinguish
which resources are available to be run under the Whatlf module. A Y in this field

means the resource is a Whatlf resource. (A Whatlf resource is one that should be

rerun as part of the user's private hypothetical scenario, using hypothetical input data.
See Section 7 for further information about the what-if capability of the user
interface).

Science Appfications International Corporation

/

, : .. ,

/

Session Manager 12

Resource Prerequisites

Prerequisites

id prel pre2 pre3 pre4 pre5 pre6 pre7 pre8 pre9 prel0

1 o -1 -1 -! -1 -! -1 -1 -1 -1
2 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
.q 9 -1 -1 -1 -1 -1 -1 -1 .1 _4

Field Name INGRES Variable Type Comment

id iniegerl Index of executable resource,

non-negative integer (0- 127)

index of prerequisites for

prel - prelO integer1 resource id. Used prerequisites

are non-negative integers (0-127).

Unused prerequisites are negative

integers (- 128 through - 1) Figure 3-

3: Schema of the Prereouisites table of session mar database

The Prerequisites table is shown in Figure 3-3. it provides the mechanism for

specifying what resources are needed in order for a given module to be invoked. The

first field is the index of the module whose prerequisites are being specified. This

index corresponds to an id in the Resource_List table. The following fields are

the indices of the resources required. If fewer than ten resources are required, the

unneeded fields are filled with -1. The session manager only takes action for
resources with nonnegative resource numbers.

i

Science Appfications International Corporation

Session Manager 13

Resource Activity Board

Resource_Board

test__id r0 rl r2 r3 r4 r5 r6 r7 r8 r9

_,10001 65 0 0 0 0 0 0 0 0 0

,1000 65 0 0 0 0 0 0 0 0 0

_,10003 9 0 0 0 0 0 0 0 0 0

INGRES Variable Type

test_id varchar(6)

r0 - r9 integer4

Commeqt

string containing id of test

resource variable encoding 15

resources per variable with two bits
per resource: 0=Off, 1=On, 2=In

progress or job error)

_of the Resource Board Table of the session mor database.

The Resource Board, shown in Figure 3-4, is the session manager's private job
status blackboard'S. This table is used by the session manager to track which modules
have run correctly, which are currently in progress or have exited with an error, and
which have not yet run. Since several tests may be in progress at the same time, each
status log report has the test id as its first field. When a resource becomes available
(when a job has run and completed correctly, for example) its flag is changed by the
session manager process to +1. When the session manager first invokes an executable,
it changes the flag for that resource to -1. While the task is in progress, the flag
remains set to -1. If it aborts or hangs up, the flag will stay at -1, indicating to the
session manager that the resource is not yet available.

Although tbr clarity, Figure 3-4 seems to indicate that the number of resources is

limited to only ten per task, the actual implementation (which is transparent to users)

actually interrogates individual bits of integers, and thus the maximum number of

resources that may be specified as required by a particular task is 127, which should

be adequate for a'realistically complex expert system.

The Job table is another table used intemally by the session manager to form the

command necessary to invoke the module. The Ingres table also preserves the job

Science Appfications International Corporation

Session Manager 14

i i
stream status in the event of a machine crash or other failure. It is not set or used
directly by programmers of individual expert modules.

Adding a New Module

As the expert system grows and evolves, there will frequently be the need to add a

capability, such as a new expert system module, or some additional data acquisition or
preprocessing capability. New capabilities must be written as executables that will

work correctly when placed in any directory, and when invoked by the user

"ingres". The executable must have one and only one argument, the testid, which

the session manager will determine at run time and will use as the sole command line
argument to the executable.

To add an executable into the expert system, perform the following steps:

• Place the executable (or a soft link to it) with appropriate permissions, in the
appropriate directory.

• Login as the user "ingres" in order to have write permissions in the session
manager's session_mgr database.

• Open the session_mgr database.

Print out the contents of the Resource_list table, choose the next available integer as
the index of your (new) executable, and place an entry with the index and the

name of your executable in the table. If your executable requires new resources
(such as input files) that are not already indexed in the system, give them indices
in the Resource_List table as well.

4•

In the Prerequisites table, place an entry giving the index of your new module as

the entry in the id field, and the indices of the resources your modules needs in

order to run, in as many of the pre fields as are needed. Fill the rest of the 'pre'
fields with - 1.

Science Appfications International Corporation

Session Manager 15

Flow of Control

The session manager process itself is invoked each time the command new data is

issued. The new_data process queries for the test_id of the newly arrived test, and

gathers the pretest information that must be entered by hand CLRU numbers).

The session manager then reads the resource_list, chooses the first item on the list

where either all the prerequisites' flags are +1 ("on"), or if there are no prerequisites,
sets the resource flag to "incomplete" (-1) for the module and invokes it. When the

module completes with a normal exit, the session manager updates the resource flag

to +1. While the module is executing, and if the module exits with an error, the flag
remains at - I.

The session manager will continues until there are no more tasks that can be started.
The session manager then quits.

Science Appfications International Corporation

Feature Extractor 16

Section 4- Feature Extractor

Overview

. .

.Z " '" if"

(!i¸.•2,,_

The feature extractor program is at the root of SAIC's engine health management
system for the space shuttle main engine (SSME). It provides the basic information

on engine behavior necessary for operation of the expert modules. The expert
modules use the sensor trace "features" reported by the feature extractor to reason

about the health of an SSME component or assembly.

The feature extractor is currently capable of detecting the following generalized
sensor trace features:

peaks (All peaks or only the primary peak, where primary peak is defined as the

peak having the greatest magnitude on the interval of interest)

• spikes

• erratic behavior

• level shifts

• redline violations

Sensor traces may also be statistically compared to determine the likelihood that they
represent the "same" (two samples of data from the same parent distribution) or a

different measurement or differ by a constant offset. This capability is provided by
the feature extractor different_than. In addition to detecting the general features

described above, the feature extractor is also capable of detecting more specific

behaviors of the SSME such as changes in the net force exerted on the balance piston,
and preburner pump bistability.

When invoked, the feature extractor reads a general command table that provides the

program with basic information such as what type of features to look for and in what

measurements (PIDs) to look for them. More specific information, such as the start

and stop times of the search, and in the case of peaks, what type of model to fit to, are

determined by the program at run time. By writing a set of general commands to the

feature extractor, which are valid for all tests, consistent behavior is assured. In light of

the consistent manner in which features are collected, the results may be used to

accurately monitor the health of an SSME component.

Science Appfications International Corporation

i i i ¸

Feature Extractor 17

;i i_

!i. , 11

Feature extraction is initiated by the session manager after the session manager has
been notified of the arrival of new data. Both controller and facilities data for a test

must be loaded prior to feature extraction. The first operation performed by the
feature extractor is an analysis of the thrust profile for the test of interest. Periods of

constant thrust are detected and classified by start time, stop time and percent thrust.
This information is then used to provide parameters for each feature extraction
module. Only features occluding during times of constant thrust are extracted. This

provides protection against expected transients in the data which could manifest

themselves as interesting features.

The feature extractor is designed to be run once for each analysis of an SSME test. A

general command table, as referred to above, has been provided for the extraction of

those features necessary for HPOTP analysis. No changes to this command table, or

test specific setup is required. To extract features/'or the analysis of another module,

appropriate commands must be appended to the command table. To alter any aspect
of the program or command table between tests, aside from additions to the command

table pertaining to additional modules, would make any further comparisons between
tests invalid. The program needs only to be called with a different test id on the
command line to provide features tot another test.

Main Driver

The main driver of the feature extractor is responsible for building the array of run

time commands based on the contents of the command table feat commands,
found in the ssme data database, and the results of a thrust profile analysis. Each

entry in the run time command array represents a call to a specific feature extraction

module with parameters determined by the results of the thrust profile analysis for the

test of interest and the contents of the command table. The main driver loops

through this array of commands executing each named module with the specified

parameters. The results of each feature search are appended to a temporary output
file, found in /trap, where a separate file is created for each type of feature. After

all commands in the run time command array have been executed, the contents of

these temporary files are loaded into the corresponding Ingres feature tables and the
files deleted.

The columns in the command table are as shown below where each row represents a
command to extract the named class of feature from the measurement.

expert - This character string indicates the name of the expert module which

requests the feature. The feature extractor runs only once per test so the features
needed by all expert modules are extracted at the same time. This field is saved

in the feature tables so that SQL queries may be issued for all features requested

Science Appfications International Corporation

¢ '- ? ' :: ?_i_i_i:'i:i:ii̧

ii, _L.

i•

• i _ _•

,i _ ¢,

Feature Extractor 18

for use by a certain expert module.

sensor - This is a standardized string describing the measurement to be searched

for the given class of feature. This string is used to look up the appropriate pid

name which is an index into the data tables. For example, pid 63 is represented
by the string "MCC Combustion Pressure, Average"

sensor postfix - This indicates the use of either full sample data or one second

average. The former is indicated by entering a lowercase "f" in this column while

the latter is indicated by a lowercase "a". This field is used to qualify the contents

of the "sensor" field which indicates which pid to operate on but does not specify

whether to use sample rates of the raw data, or one-second averages computed by
the PTDS.

modulename - This is a string representing the feature extraction module to be

called. The names of the available modules are as follows: DifferentThan,

FindErraticBehavior, FindPeak, FindSpike, FindLevelShift, RedlineCheck,
DeltaLevelShift, BalanccPistonCompare, FindBistable, IsFlat.

starttime - This character field contains a string indicating the time at which

feature extraction is to start for this measurement. The time can be specified as an

integer value or as one of the generic strings shown in the table below which
represent times of interest common to all tests

endtime - The contents of this field specify the time at which feature extraction

is to end for the current measurement. Valid entries are the same as those
described for starttime.

Valid entries for starttime and endtime fields

bot Beginning of test
data.

cot End of test data.

cutoff Engine cutoff time.

ts_eq

lox_cq

Time at which
turbine seal
equilibrium is
reached.

Time at which LOX
seal equilibrium is,
reached.

Science Appfications International Corporation

...... i _'i _ _ i̧ ;" "i'i"ii !̧ ¸

Feature Extractor 19

•i:_ i _ _,

NOTE: Setting starttime = endtime indicates the special case where all periods of constant thrust

are examined for the requested feature.

The fields paraml through param5 are character strings containing parameters
specific to the named extraction module. Depending on the module, some, all or

none of these fields may be used. In the event that a field is unused, its contents are

irrelevant. Unused fields have been filled with an X for ease of inspection.

Thrust profile analysis of a test consists of detecting all periods of constant thrust over

the entire range of data stored for I=HNIS ThrustPid, which is currendy defined to

be the one-second average of pid 63 (pid "63A"). Pid 63 represents the engine's

response to the commanded throttle value. Commanded throttle was originally
chosen for this analysis as it is noise free, making thrust level changes easy to detect

and the percent throttle value easy to determine. Currently, response to commanded

throttle is used. It is less prone to falsely indicate as steady state, periods of changing
thrust. It was lound that in some cases the rise time of the engine to a throttle step was
significant enough to cause the feature extractor to flag transient effects as features.

In the interest of cutting down on the amount of features to be analyzed by the

preprocessor (HFILTER) the pid used for thrust level analysis was changed from pid
"287a" to pid "63a".

Each period of constant thrust detected has its start time adjusted to account for

settling time, such that the resulting interval represents 95 percent of the original time
segment (with a minimum allowance of one second and a maximum of three

seconds). This operation moves the end points of the interval away from thrust

transition times. This helps eliminate the effect of transients which may manifest
themselves as features.

For each cntry in the command table, where starttime equals endtime, a

corresponding entry is made in the run time command array for each period of

constant thrust. In this way only features which occur during periods of constant
thrust are recorded, with each feature tagged by the thrust level at which it occurred.

The user can override this operation and set predetermined start and end times for a

feature search in a specific measurement, however if this time period spans more than
one thrust level, any features found will carry thrust level iris of -999.

Thrust profile analysis is made automatically for each test. Each period of constant

thrust is classified and stored in the Ingres table feat thrustleveldescrs.
This table contains the following fields:

module, test_id, sensor, start_time, end_time, offset, slope,

Science Applications International Corporation

, ' .i. ¸ •

./

?

, i

Feature Extractor 20

offset_sigma, slope_sigma, chi_square and thrust_level.

As mentioned above, module represents the name of the expert module which uses

this feature in its analysis. The field test ia is the id string of the test from which

the data used for feature extraction was drawn. The sensor field will contain the

standard descriptor string corresponding to EHMS ThrustPid. The start time
and end_time represent the start and end times of tl_ period of constant thrust- The
offset and slope represent the two parameters of a straight line fit to the data over

the specified time range, The standard deviations on these parameters are given by
offset_sigma and slope_sigma. The field ehi square is a measurement of how

good the fit to the data was. The field thrust_level represents engine thrust level, as
given by offset scaled to percent thrust.

The feature extractor may operate with either one second average or full sample rate

data. Because many features happen over time scales of several seconds or longer, it
is appropriate to fit them using one second average data. For each one second time

bin there exists a standard deviation. These values are used to help track the
movement of a measurement and provide the ability to correctly account for the noise

in the data. Full sample data is used when necessary for determination of high speed

features such as the 1/3 - 1/2 Hz oscillation in PBP bistability. When full sample data
is used, only short intervals should be extracted from the data base to minimize
memory use and maximize execution speed.

In the (hopefully rare) event era severe run time error (such as the attempt to solve a

singular system of equations) during the execution of any given command, the

feature extractor main driver will log the complete text of the current command string

in the file BAD_COMMANDS. This file will be found in the users current working

directory. If B/_Jg_CO_NDS already exists in the users current working directory,
the command which produced the error will be appended at the end of the file. Note

that the feature extractor does not halt execution in the event of an run time error.

Any command which produces a severe run time error during a calculation, from

which there can be no graceful recovery, causes a Unix signal 14 (SlGALRM). The
handler routine assigned to S IGALRM, logs the current command in

B/_ COm, I,M_DS and executes a Iongjmp to cause feature extraction to resume with
the next command found in the command table.

Feature Extraction Modules

The basis of all the feature extraction modules is the curvefitting routine

I=HMS MakeFit which makes use of the Numerical Recipes routine "mrqmin".

Source code for this routine, as well as a thorough discussion of its operation, can be

found in section 14.4 of "Numerical Recipes in C, The Art of Scientific Computing"

Science Appfications International Corporation

Feature Extractor 21

:xtracti_

5HMS
=-HMS

ttic (Fi

]omma

'.ndtime

?his m

_rocess

he nun

"HMS
alculat

ound t

rratic 1

it is a

lhich i

it exc_
]entif,

ppend
)aded

'he re,

tart_

e (F

omm

_dtitr

ind_

SCCC

ade

(Cambridge University Press, 1988). EHMS_MakeFit can fit to any function that is
differentiable with respect to the fitted parameters over the interval of interest. Each

model for use in curve fitting exists as an independent subroutine. A pointer to the

desired model for fitting is passed to the routine EHMS_MakeI=it, indicating which
model (functional lorm) to fit the data to. Currently models exist for an Nth order

polynomial, a fast rising function with an exponential fall-off, as well as for a
Gaussian (bell) curve.

Additional models can be added to the system by writing a short model routine based

on the existing examples and making an entry in the routine
EHMS GetNumBasisFunes to note how may fitted parameters are involved.

All feature results reported to the data base, irrespective of the routine that produced
them, contain the fields: module, testid, sensor, thrustlevel and start and end

time. The field module represents the name of the expert module which requested

the feature. The field called sensor is the standardized descriptor string representing
the name of the measurement. The thrustlevel field indicates the thrust level at

which the feature occurred. The start and end time of the feature may fall into

either of two categories depending upon the type of feature. Peaks, spikes, level

shifts, and violations have a start and end time corresponding to the start and end time

of the extracted feature. Erratic behavior, different than comparisons and bistability

checks report start and end times which are equal to the start and end time passed to

the extraction routine. This is reasonable as these modules check only for the

presence of a condition on the specified interval, not for the presence of specific
features.

For the collection of certain classes of features, limiting feature extraction to periods
of constant thrust is inadequate to insure collection of valid features. Due to the

methods employed in the feature extraction routines: FindErratieBehaviour,

FindLevelShift, DeltaLevelShift and FindSpike, the effects of fuel tank

repressurization must be accounted lor. The feature classes noted above should only
be collected during overlapping periods of constant thrust level and linear fuel tank

repressurization/venting behavior.

Evidence of fuel tank repressurization and venting are searched for in one second

average data for pid labeled, 'LPOTP Pump Discharge Pressure A' (nominally pid

#209). There is no direct measurement of this behavior so 'LPOTP Pump Discharge

Pressure A' is used as it was deemed the most sympathetic to the effects of interest.

Repressurization and venting are indicated in pid 209 as linear periods which deviate
from the usual horizontal trace, giving sections of the sensor data a sort of saw tooth

effect. The algorithm which detects these periods,

EHMS_FindLinearLPOTPDischargePressure, takes advantage of the

observation that all sections of the trace, including those where venting or

repressurization is taking place, exhibit a constant slope. The recursive routine

Science Appfications International Corporation

Feature Extractor 24

E
E

ol
Ol

a,c

re

el

T

cl

sr
sl
fe

tl_

is

d_

St

fc

St

re
al

d
E

t_
ti:

dJ

g'
rc

p_
f(

A

T

li

U;

el

el

e:

d;

s(

O:

si

toggles as shown below:

ftd_sca_aev = fit_scd_dev + (0.5 _ step_size);

Any excursions outside this limit, which exists for no longer than

I=HMS_SpikeWidth seconds, are identified as spikes. The magnitude of the spike is
reported as magnitude. The sign of magnitude is determined by the convention:

raw_data[Index_of peak] - fitted_point[Index_of peak] .

The constants EHMS_NumSigmasForSpike and EHMS_SpikeWidth are

currently defined to be 5.0 and 3 respectively.

The record for each entry will contain the following: module, testid, sensor,
start_time, end_time, magnitude, thrust_level

Level Shift (FindLevelShift)

Command table inputs: expert, sensor, sensor__pos(fix, modulename, starttime,
endtime

The purpose of FindLevelShift is to detect changes in a sensor trace from one

constant value to another. It works by breaking the specified time period into sub

periods of EHMS_SublntervalLength seconds and making a separate first order
polynomial fit to each period. The average and standard deviation of the constant

offset terms of the fits are used to locate any level shifts. Any significant change in
the data will manifest itself by a slope change in the set of fits to the data. A dramatic

slope change will result in a line having a projection on the Y axis which far exceeds

the average as determined from the multiple fits. Any excursions which exceed the
average value plus or minus 3 times the standard deviation indicate the start of a level

shift. Excursions are tracked until such time as they return to within acceptable limits

or the period of interest is exhausted. Each level shift found is analyzed and the
results appended to the database table Feat levelshift.

The record for each entry will contain: module, testid, sensor,

endtime, last_magnitude, delta_magnitude, thrust_level.
starttime,

Peak (FindPeak)

Command table inputs: expert, sensor, sensor__pos(fix, modulename, starttime,

Science Appfications International Corporation

Feature Extractor 25

" i _' _

endtime, peak_set (paraml), min_peak (param2), min_width (param3)

This module employs a technique where transitions in the data are identified by

moving a tangent line over the data and noting the slope of the line. A line made up

of three points is used, the center point being the "tangent" point. If the slope of this

line exceeds a limit which allows for noise, then the time at the tangent point is

marked as a transition time. Identification of a transition point is made by a check

for slope > or < 3.0 times the standard deviation at the tangent point. The reasoning

behind this is that the worst case slope which is still classified as noise will be,

slope = (4 " sigma) / 2.0 = 2 - sigma

The slope of the tangent line must exceed 2 * sigma in order to be considered above

the noise level in the data. Good results have been obtained using 3 * sigma.

The sign of the slope is also exploited for peak detection. Changes in sign indicate a
cusp or peak in the sensor data. Only positive going peaks are detected, as indicated

by a change in the sign of the slope from positive to negative. A peak is tracked from
the first excursion outside the noise level to until either the measurement levels off, or

begins to exhibit another pe:_k. The detected peaks are then checked to make sure

that they have a magnitude >= the minimum specified in the command table and that

they have a width >= that specified in the command table. The data is then fitted to

one of two models based on the position of the cusp relative to the start and end time

of the peak feature. The first model is a fast rise with an exponential falloff. The

second model is a gaussian curve . Those peaks with a chi-square per degree of

freedom value of greater than EHMS ChiSquareFaetor, where

EHMS_ChiSquareFaetor is currently defined as 3.0, are discarded. The remaining

peaks are then described and appended to the temporary table peak .trap. If it was
specified in the-command table that only the primary peak be reported, then all others
are discarded.

The entry for each record will include: module, testid, sensor, peak_ht, taph
(time of peak height) , fwhm (magnitude of peak at half magnitude), tafwhml

(times where peak is at half magnitude), tafwhm2, fit_type, ehi_square,

num_params, the fitting parameters paraml, param2, param3, param4, and
thrust_level.

Science Appfications International Corporation

• L,, .,,i. i ¸,

Feature Extractor 26

Different Than (DeltaDifferentThan)

Command table inputs: expert, sensor, sensor pos¢fix, modulename, starttime,

endtime, compare_descrip (paraml), polyorder (param2), num comparison sigmas
(par am3) - -

The DlfferentThan module analyzes data from two sensors which may be drawn
from the current test or the current test and a comparison test determined at run time.

A first order polynomial fit is made to a composite data set where the data points and
standard deviations are given by,

oeisa_aa=aii] = aatal[i] - aa_a2[ii:

aeita sigmasiil = sqrt((douole} (sigmasiii'

sigmas2 '));
* sigmaslfi} + sigmas2[i] *

A fit which produces a line with little slope indicates that the two curves track each

other well. The constant offset term produced by the fit indicates the distance

maintained between the two data sets. A small value within acceptable error limits

indicates that the two curves may be drawn from the same parent population. A
constant offset term which exceeds acceptable error limits is indicative of a constant

offset maintained between two curves. For the case where both fitted coefficients are
outside error limits the two curves are determined to be "different".

After the fit is made to the composite data set, a probability measurement is made to

determine if the two data set were drawn from the same parent population. This
measurement is based on the Kolmogorov-Smirnov test. Small values of the

measurement indicate that the cumulative distribution function of the first data set is

significantly different from the second. This value, as well as the maximum step size
found in either data set and the maximum average magnitude found on either data

set, is used in the logic described below to determine if the two data sets can be
considered to be "the same" or to differ by a constant offset.

If the result of the Kolmogorov-Smirnov test is greater than the value defined by
EHtClS_SameAsProbability, or three times the standard deviation calculated for

the fit is less than half the maximum average magnitude, then a further check is

made to determine if the higher order coefficients differ with acceptable error. If for

each fitted parameter 1 through N (where parm_sigmas is the sigma for the
corresponding parameter, adjusted to account for bit toggle),

Science Appfications International Corporation

_. ' i _ i _

r• ¸_ _i _!

,i' /

4,

Feature Extractor 27

paramti

ano

paramli

- (num_ccmparison sigmas " oarm_sigmasli

- (num comparison sigmas - parm_sigmasii

) >

) < r
then the two data sets are judged to be drawn from the same parent population. If the

above is true for all parameters except the constant term, then the two data sets are

said to differ by a constant offset. The offset value is given by param[1], and the

standard deviation for this value is given by parm_sigmas[1]. If none of the above

is true and, all parameters 1 through N have statistically significant terms, then the two

data sets are considered to be drawn from different parent populations.

The record written to the different_than table includes: module, testid,

sensor, compare_testid (comparison test), compare_sensor (comparison

sensor), start_time, end_time, the comparison statistics ehi_squarel ,
chi_square2, prob, coefs_within_err_bars, the offset flags differ_by_offset,
offset, offset_sigma, and thrust level

The two most common uses of the DifferentThan module are listed below, along
with a short description of how to interpret the results produced.

1. Checking that redundant sensors are tracking each other within statistical limits.

To make this type of check, add an entry to the table feat conunands

containing the command table inputs listed above. Setting star-t time and

end_time equal will cause the sensors to be compared for all periods-of constant
thrust. After the feature extractor has run, select the different than records for the

current test (test_id) and the first pid listed in the command (sensor) from the table

feat_commands. Inspect the coefs_within err bars fieldof each

record. If any records are found which have a value of--False'for this field then the

two sensor traces compared were found to differ statistically from each other. More

specifically, the coefficients of the straight line fit to the difference data set were not

within the tolerance set by num...comparison sigmas. Further verification of

the probability that the two data sets are not draw_ from the same parent population

can be determined by inspection of the field ehi square which represents the
goodness of the fit to the difference data set and prob which is a measure of the

actual probability that the two data sets were drawn from the same parent population.
Small values of prob indicate that the two data sets are significandy different.

. Checking for sensors which differ by a constant offset.

This check is handled in the same manner as the check described above but

Science Appfications International Corporation

Feature Extractor 28

involves inspection of the field differ by_offset. If a value of "True" is

found in this field, then the two data sets were found to track each other but with a

constant offset. The value of this offset is found in the field offset The sign on
this value is determined by the convention used to compute the difference data set
used for the fit

delta_aata[i] = aa_al[i_ - aata2[i];

A positive offset value indicates that the first data set listed in the table (data1)

has values greater than the second (data2) by a constant term listed in the table
field offset.

Redline Check (RedlineCheck)

Command table inputs." expert, sensor, sensor__pos_'x, expert system modulename,

starttime, endtime, the comparison sensor compare descrip (paraml), check type str
(param2), limit_type str (param3) - - -

The RedlineCheck module is used to check two pids to ensure that they stay within
the limits defined for the given measurement. If an excursion beyond the limit

defined is found, its duration is checked against a time limit value and decision logic
is applied to determine if a redline has been violated.

Redline limit information is stored in the database table. All information needed for a

redline check is extracted by the Redline Check module, the user need only specify
(in the command table) the parameters check_type_str and limit_type_str. The

parameter check_type str is an enumerated type which may have one of the

following three values: both_pids, either_pid or difference.

Specifying both__pids causes the Redline Check module to look for instances

where both pids exhibit an excursion beyond the specified limit at the same time.

Choosing either...pid will indicate that only one pid must exceed the specified
limit for a redline violation to occur. The last choice, difference, causes this

module to look for redline violations in a composite data set made up of the point for

point difference of the original two data sets. Note that the both_pids option
should only be used with redundant pids as only one set of redline information is

retrieved from the data base. Also when using the difference option a row of redline

information must be present in the table redline_info, where the pid value is a

string of the lbrmat pid#' pid#, which corresponds to the arguments for sensor

and comparison sensor. The second parameter passed to this routine,
limit_type_str, specifies whether the module should look for excursions

below or above the lower or upper limit. These two options are specified by the

Science Appfcations International Corporation

Feature Extractor 29

values lower and upper respectively.

The record written to the table, feat_redlineviolations will include:

module, testid, sensor, paired_sensor, violation_start, violation_end,
check_type, limit_type, redline.

Delta Level Shift (DeltaLevelShift)

Command table inputs: expert, sensor, sensor__pos_'x, the expert system modulename,
starttime, endtime, compare_descrip (param 1)

The DeltaLevelShift module serves as a front end to the LevelShlft module.

The purpose of this module is to produce a composite data set made up of the point
for point difference between the two specified sensor data sets. A call is then made to

the LevelShift module with the composite data set. Using this preprocessing allows

the expert to look lor level shifts in the difference between two pids. This is often

useful in such cases as balance piston analysis where changes in the net force exerted

on the balance piston can be detected by looking for level shifts in the data set
comprised of pid 327 - pid 328.

Any features found by this module are reported to the same table used by the
standard Level Shift module, feat_levelshift. The results of this module are

distinguishable by an entry in the sensor column of the format pid#-pid#.

Balance Piston Comparison (BalancePistonCompare)

Command table inputs." expert, sensor, sensor__postfix, modulename, starttime,

endtime, compare_descrip (paraml), compare_test (param2),
num_comparison_sigmas (param3)

The BalancePistonCompare module serves as a front end preprocessor to another

standard module, DifferentThan. BalancePistonCompare produces a composite
data set made up of the point lbr point difference between the two specified data sets.
BalancePistonCompare creates two composite data sets, one with data drawn from
the current test and one with data drawn from the comparison test.. A call is then
made to the DifferentThan module with the composite data sets. The purpose of
this specialized module is to look /or changes in the net force exerted on the balance
piston between tests at similar thrust levels.

Science Appfications International Corporation

Feature Extractor 30

,i_:i iI_'I_'I_-i

._i ,, i'i: _ ::_. "_";

!i••: ¸ !_•

Any features found by this module are reported to the same table used by the
standard DifferentThan module, feat_differentthan. The results of this
module are distinguishable by entries in the sensor and comparison sensor columns
which, for BalancePistonCompare, are of the form: pid#-pid# which
correspond to the sensor and comparison sensor.

Bistability (FindBistable)

Command table inputs." expert, sensor, sensor_.posrfix, expert system modulename,

starttime, endtime

This special purpose module is intended to test for the presence of Prebumer Pump

Bistability in the SSME. This goal is accomplished by searching the pid defined by

the variable EHMS_BistablePid for negative going spikes over each period of

constant thrust having a thrust level of EHMS_MinThustForBistablity or lower.
EHMS_MinThustForBistablity is presently defined as 65 percent thrust. The

method used to detect spikes on the interval of interest is the same as that applied by

the Find Spike module, with the exclusion of second order fitting capability.

If the number of spikes found on any given interval is greater than the number

defined by the constant EHMS_SpikeCountForBistability, then that interval is

flagged as containing an instance of Preburner Pump Bistability.

The record written to the table feat_bistability will include:
testld, sensor, fit_start, fit_end, thrust_level

module,

Conclusions

The feature extractor program provides a flexible, expandable system for the

collection of important indicators of SSME performance. The system can quickly

and easily be extended, or with only minor I/O changes, be applied to an entirely

different problem. So long as the extraction modules are kept general, such as peak

and spike, (features which may be found in almost any real world data set) the
modules may be reused in other systems. Additional details on how to add to the

feature extractor command table, and how to add a new feature extraction module are

discussed in Appendix A - Extending the System.

Science Appfications International Corporation

Expert Modules 31

Section 5 - Expert Modules

This section discusses the extent of the HPOTP knowledge acquired in Task 1 of the

project, and which areas were chosen for implementation. It then delineates the

knowledge acquired for the areas chosen for implementation.

Overview

Currently, there is one expert module running with the PTDS called the High Pressure

Oxidizer TurboPump (HPOTP) module. Five areas were addressed by the HPOTP

module: Preburner Boost Pump Bistability, Balance Cavity, and Primary,
Intermediate, and Secondary Seals. All rules for the module were coded based on

interviews with Marshall Space Flight Center expert analysts whose area of expertise
was the HPOTP, and with former designers and testers of the HPOTP.

The basic purpose of the HPOTP module (as any other module in the PTDS) is to

assist, not replace, the analysts by performing the more mundane and time consuming

aspects of their data analysis. It will point out interesting aspects of the data, such as

unexpected differences between the current and previous tests or unexpected structure
in certain sensor traces, but it will be up to the analyst to perform the final failure
analysis.

The mechanism chosen to point out these highlights is a list of short English language
observations about unusual features in the data. It is known that most of the value of

the expert system comes in giving interesting observations about the data (e.g.. an
anomalous pressure rise seen in the time period 35 < t < 40 sec, in the HPOTP

primary seal drain pressure), rather than in attempting to diagnose exactly what

caused the problem. The base cause of many anomalies is not possible to pin down,

even by the most experienced experts. Sometimes even examining the dismantled
pump does not yield an unambiguous explanation of an anomaly.

Therefore, although we intend to disambiguate postulates wherever possible, we
expect that in some cases, several explanations will be plausible for an observed

anomaly. The system will display all postulates if there is not sufficient reason to

eliminate them. This will not greatly affect the value of the expert system analysis,
since the main value is in correctly recognizing the interesting patterns in the data.

Although sensor validation will be done in a different module, a modest amount of

analysis is done in this module as a placeholder until the sensor validation module is

Science Applications International Corporation

Expert Modules 32

added. In particular, although the capability exists in the feature extractor to check

every sensor for erratic behavior or spikes, this is not done routinely in this module.

In order to decide which of a redundant set of sensors to use for our reasoning,
simple checks are made to ensure that redundant sensors give readings within

expected errors. Rules are available for handling either sets of two or three sensors.

Bistability

The feature extractor module looks for bistability between engine start and shutdown.

Any bistability features present for the current test are reported by a rule which

examines the feature table feat instability. The knowledge for bistability is

contained in the feature extrac_r, and all the analytical work for determining
bistability is described in the features chapter. The criteria specified by MSFC NASA

experts are slightly different from those used by Rocketdyne, and hence in marginal
situations, the two analyses give slightly differing results. MSFC experts have stated

that this is not a problem, and that the criteria used in the expert feature extractor are

a useful addition to the Rocketdyne analysis, as these expert criteria are more simply
linked to directly measured quantities.

The data displayed in support of a bistability diagnosis includes the behavior of the

engine controller. In cases of true bistability, the engine controller is asking for first

more, then less, power from the HPOTP. This "sawtooth" behavior could be included

in the determination of bistability, but is not at the present time. The sensor is
displayed for the convenience of the viewer, however.

Balance Piston

j': ,

The rules that deal with the balance piston pressures (327, 328) are concerned with

features occurring between engine start and shutdown. There are two separate
balance piston modules. The first module (Appendix B Table 1) has one rule that is

fired when the difference of 327 and 328 is different from the current test to the

previous test used for comparison. Since the feature extractor does the different than

comparison during intervals of constant thrust and there may be many intervals with

the same thrust level, the postulate will only report for the unique thrust levels. This

module will not be executed if there is not a previous test to compare with in the
database.

The second balance piston module is only done for the current test. The truth table

in Appendix B Table 2 is evaluated for features occurring simultaneously. A list of

unique features start times is made for Spike, LevelShift and DeltaLevel

involving balance piston pressures. Then the truth table is created internally for each

Science Appfications International Corporation

ii/__ _ i/

i _ _.

Expert Modules 33

time in the list and evaluated. The '+' and '-' refers to the magnitude of the Spike or
the offset of the LevelShift and a '0' means that the feature in question has no

bearing on the postulate. Rows with two sets of conditions for one postulate means
that if either set of conditions is true the rule declaring that postulate will fire.

Three Sensor Redunduncy

To maintain consistency throughout the rules it is necessary to choose one sensor to

represent a group of sensors that measure the same quantity. The three sensor
redundancy (951, 952, 953) has a possible complication in that one of the sensors

may be missing. If this is the case one of the rules redpresented in Appendix B Table

A will fire. If all sensors are present then the rules in Appendix B Table B will

determine the choosen sensor (951A). This truth table gets set-up only once with the
features occurring during mainstage, the longest interval of constant thrust with

engine start time less than engine shutdown. An 'N' indicates that the feature extractor

module DifferentThan did not detect a difference in the two sensors. Likewise a 'D'

means there was a difference reported. Only one of these rules will evaluate to true.
The choosen sensor is written to the database table redund sensor choice.

Two Sensor Redundancy

The rules in Appendix B Table C are used to choose a sensor to represent each of the

two sensor redundancy packages (91, 92), (209, 210) and (211,212). The features of

interest occur at mainstage and if available from the previous test. If no previous test
matches up to the current one, rules which only need features from the current test

will choose the sensor. The entries 'No Dlff', 'No Spike' and 'Not Erratic' mean that

the feature was not detected. The choosen sensor is written to the database table

redund_sensor choice for each individual sensor package.

Similar Turbine Discharge Temperature Sensors

Features occurring during the mainstage interval of constant thrust for 233 and 234

are used to select one of these sensors to use throughout the expert. There are

instances where the features present would normally fire more than one rule, like if

both sensors were both erratic and showed spikes. Then the rule that looked for both

erratic and spiked would fire plus the rules that looked for some of these features and

do not inquire about the others would also fire. This module was developed (as was
both redundant sensor modules) so that the highest priority rule whose left-hand

conditions are satisfied would fire and those rules which inquire about the most

Science Appfications International Corporation

Expert Modules 34

conditions are given highest proirity. The choosen sensor is then used in different

rule modules where it is necessary to inquire about the turbine discharge temperature.
The choosen sensor is written to the database table redund sensor choice.

Seals - Comparing Pressure and Temperature

This module focuses on whether changes in seal drain pressure can be detected in the

drain temperature. This is done for the primary turbine (990, 1190) using rules

displayed in Appendix B Table 3, secondary turbine (91A, 1188) using rules

displayed in Appendix B Table 6 and the primary pump (951A, 1187) using rules

displayed in Appendix B Table 8. These rules look for the presence of erratic
behavior and/or spikes exclusively during the mainstage thrust interval. The last

postulate in each table will fire if any combination of erratic behavior or spikes is

found in pressure and temperature. The three postulates in these tables are mutually
exclusive.

Turbine Seals - Comparing Pressure to Previous Test

This module makes use of features from the previous test if available and reports if a

change of more than a constant times sigma has occurred. As shown in Appendix B

Table 5, peak height, time of peak and the full width at half max are the comparisons
made with the pressures. Using the DifferentThan feature module the offset is

compared at turbine seal equilibrium between the two tests. The absence of pressure

peaks is also noted. The constant and tolerance values for the primary and secondary
turbine pressures is retrieved from the tolerances database table.

Primary Turbine Pressure Peak and Equilibrium Checks

) •,•::.;5/

This module looks for pressure peak and equilibrium value shifts between the current

and previous test as shown in Appendix B Table 4. DifferentThan features of

interest are those that occur during the interval of constant thrust that includes the
turbine seal equilibrium time or the first interval after that time. The turbine seal

drain pressure peak occurs somewhere between start and engine shutdown. The

sensor chosen that represents turbine discharge temperature (233A) for the current

test is not necessarily the same sensor the expert choose when executed for the

previous test, so the DifferentThan module will have previously done the following

comparisons: 233 (current) vs. 233 (previous), 233 (current) vs. 234 (previous), and
234 (current) vs. 234 (previous).

"[.f,

• , _?_,
J

Science Appfications International Corporation

Expert Modules 35

ii _

Primary Pump Seal

This module does checks with the sensor chosen from the three sensor redundancy
module (that picks 951A). The first postulate in Appendix B Table 9 reports a non-
flat primary pump seal drain pressure in the thermal equilibrium interval of constant

thrust. The primary pump seal drain temperature is also checked for non-flatness but

during the lox seal equilibrium interval of constant thrust. Since the feature extractor

has no idea of knowing which sensor the expert will be choosing as the 951-952-953

package chosen sensor, the DifferentThan feature module has six comparisons to
make to facilitate the check done for the third postulate. The fourth postulate

requires a sign change between the current and previous test in the primary pump seal

drain temperature during the lox seal equilibrium interval and the turbine discharge
temperature during the seal thermal equilibrium interval.

Secondary Turbine Seal Cavity Pressure

The rules for Appendix B Table 7 look for features occurring between start and

engine shutdown. The first postulate will fire once if any combination of erratic

behavior or spiking is present for both secondary turbine seal cavity pressure sensors

(91 and 92). There is also a check to ensure that the time of peaks for the secondary
turbine seal cavity pressure and primary turbine seal drain pressure is within a
constant number of standard deviations.

Intermediate Seal Purge Pressure

The postulate in Appendix B Table 10 reports any combination of erratic behavior

and spiking for both intermediate seal purge pressure sensors (211 and 212). The

time in the postulate is the smallest of the start times of the two features found. Only
erratic behavior and spiking in 211 and 212 occurring between engine start and
shutdown are considered.

Shutdown Checks

Appendix B Table 11 shows the postulates that require features occurring during the

cooldown time after engine shutdown. Pump discharge pressure (90 and 190) and

turbine discharge pressure (24) are checked to make sure they do not display erratic
behavior or spiking. Since pump discharge pressure is measured by two sensors but

Science Appfications International Corporation

• ,•_ i_,,:I

i ¸
, :_i• _

Expert Modules 36

190 is a stale sensor, priority is given to the non-stale sensor to fire this rule.

Preburner Pump Bistability

Any bistability features present for the current test are reported by the rule described

in Appendix B Table 12. The thrust level at which the bistability took place is output

in the postulate string. The feature extractor module looks for bistability between
engine start and shutdown.

Redline Violations

Appendix B Table 13 shows the redline violation postulate that gets fired for every
redline feature for the current test. The sensor and violation time and whether the

min or max limit was violated is output in the postulate string. Redline violations are
looked for between engine start and shutdown.

Science Appfications International Corporation

ii!!_'iI_ii••ili

i ¸ '_ i_i•

Graphical User Interface 37

Section 6 - Graphical User Interface

Introduction

The point-and-click color Graphical User Interface (GUI) system allows the data

analyst to view the status of the observations made by the system for each processed
test and graphical displays of supporting data.

The basic principles behind the use of windowing user interfaces, and the general
manipulation of X-windows based interfaces has been covered in other documents

and is reviewed in Section 9 - Anomaly Database.

Window hierarchy organization

i •

When the user invokes the GUI, the first window lists tests processed by the system,

and allows the user to choose the desired test. An active engine diagram is displayed
and engine LRUs are highlighted if the expert module analyzing that LRU has

postulates present. Any LRU, highlighted or not, may also be selected. When an

LRU is selected, a display of the detailed schematic for that LRU appears, annotated
with PIDs associated postulates. If an anomaly is present, PIDs associated with the

anomaly are highlighted in red. By choosing either a PID label or a line containing
an observation, the related time series data is displayed in graphical format. When a

postulate is selected, all supporting data, as identified by the experts, is displayed for
review.

During the interview process, the experts indicated a preference for three or four

graphs per window that could be viewed without scrolling. With current usage of PV
Wave software, the vertical scales are sometimes somewhat small for best human

factors. It may be possible to design this shortcoming away in future releases of the
user interface for other user communities.

Altering the User Interface

It is expected that the expert system will grow by the addition of more expert

modules. Each of these modules will produce new results which will be placed into

Science Appfications International Corporation

Graphical User Interface 38

i iii

• . , _ iI .

the Ingres postulates table. The user must be guided to an appropriate grouping of

these results. One way of doing this is to highlight the LRU being diagnosed on the
initial main-engine screen, by placing a rectangular box around the affected LRU.

If the user chooses this box by clicking in it, then control passes to the new module.

If the new module programmer would like to display a detailed drawing of the LRU,

with the positions of each of the pids indicated, and allow the user to click on a pid to
see graphical data associated with that pid, then the programmer may inspect the code
in the HPOTP module that accomplishes this, and reuse much of it.

Main Screen Highlighting

To add the rectangle that will highlight the LRU on the main engine diagram screen,
the programmer should look at the routines in EItM boxes, c. No code needs to

be changed to accommodate another highlightedregion; it is only necessary to

recompile the EIt_._ereate. e module with a -DMAKI=_I.RUS flag set. This will

allow access to the developer functions for sizing and moving a new box.

Pid Placement and Highlighting

i_ I

In order to place active areas on a diagram, and to highlight them under programmer

control (for example, to show a pid label in color if the pid has a postulate associated
with it), as well as to design the box on the first screen, the code in Eltbt c=eate, c

should be compiled with both -DMAKE LFIUS and-DMAKE_PID-S flags set.
These flags will allow the programmer the functionality for changing boxes around

LRU's on the main engine screen, and will also allow the functionality for creating
and placing pids on a subsidiary LRU diagram. When this compilation has been

done, running the user interface will cause the LRU screen to have a unique button
[Make Pids] that is usually not available to the end user. Clicking this button allows

the programmer to bring up a form that allows the moving of existing pids, and the

specification of locations of new pids, and their names. These forms have a [Save]

button on them. Clicking the [Save] button saves the data to a file which is used by
the system to load in the rectangle locations for LRUs and the Pid information for the
LRU screens.

In the EHMS resource file which globally is located in /usr/l±b/Xll/app-

defaults, the rectangles file belongs to the boxFile resource and the pid
information file belongs to the pid0File resource if it is associated with the

Iru0Bitrnap picture, with different numbers associating with different bitmap files.

_idlFile and irulBitmap, etc.)

Science Appfications International Corporation

Graphical User Interface 39

To change an LRU diagram, one needs to have an xbm format diagram. Scanning a
hard copy or using a drawing program may require the use of PBM or some other

utility in order to get the diagram into xbm format. Note that the xbm format is
black and white only. One can not use a color format for the LRU screens.

Once a diagram in xbm format exists, the programmer must make certain that the

EHMS resource file has the appropriate resource to point to the file. The boxFile

resource points to the data file containing the rectangles for the main engine screen.
If there is a new LRU xbm diagram, and it is to be called when the user clicks on the

main engine diagram inside the box specified by the second rectangle in the boxFile,
then the programmer would set the lrulBitmap resource to the new xbrn file.

Note that resources are numbered beginning with the numeral 0, not 1. The pids to

be placed on the new xbm diagram would be placed in the data file pointed to be the
corresponding pidl file.

Science Applications International Corporation

" :(i ¸ _ i Section 7 - Database Design

,// Introduction

Numerical test data and ancillary data generated by the expert system and display

system are maintained in a single Ingres database. The end users of the post test

diagnostic system are not required to interact directly with the database through SQL
commands. Instead, various user interface routines present a uniform appearance,
and hide any unnecessary complexity from the end user.

Data is acquired tor submission into the database management system from several

sources. First, two types of files are transmitted from th_ remote location where the

test occurred, and are transferred into a UNIX file system. These are the . e and .f

files. These contain the time series data from "fast" and "slow" pids, as well as some

general header information. Header information such as data of test, and test time of

cutoff have some variability in format since the information is entered by hand. The

year of the date, for example, is sometimes entered as one digit, sometimes two, and

sometimes four. Header information specifying the frequency of time sampling for a
particular pid is only applicable during the pre-cutoff period, and for some

unspecified time after. At a point selected by a human monitor, pid data may be
sampled at a lower rate than that specified in the header.

Another source of data is from hand-entry at the time the test is submitted into the

post test diagnostic system. Some information needed by various expert modules,

such as the serial numbers of the various LRUs bein_ tested, the engine number, are

not available in machine readable lorm at the time the test is submitted, and thus is

entered by the administrator generating the request for the post test diagnostic system
to analyze the data.

A third set of data in the Ingres database is generated by various modules of the post

test diagnostic system. The feature extractor writes items Ctuples") into various tables,
one per type of feature, for each feature discovered in the data. Feature tables' names

begin with the prefix feat . Expert modules analyze the features and write tuples

into the postulates table, into_'bad pids" and other tables such as plot_info, which
details how best to display relevant graphical data. Details on these functionalities are

found in Section 4 - Feature Extractor and Section 5 - Expert Modules.

A list of tables in the database may be seen by entering the interactive SQL editor by
issuing the command

sql ssme data

Science Applications International Corporation

4 ¸ " ,

Database Design 41

/, • i ¸¸ • i!

.i

and then from the SQL editor, issuing the command

help \g

To see the fields of a particular table, for example the test info table, one would
issue the command

help test_info \g

To leave the SQL editor, issue the command

\q

which quits the session.

General Test Information

All information to be saved in the database which occurs once and only once per test
is stored in the tese_info table. This table is shown in Figure 7-1.

i

Science Applications International Corporation

k • •
;.- • i- • ••

"I_ , _i'•_ " _ ",

(1)

o
(D

"O

'-1

-"t

.-q

-'1

oo
-6
O

O

test info

job_submit_' test id date Jenglne#icpidsJ fplds Combustion Controller Nozzle MCC
date - Devices

920129 A20531 910509 203500 B B combusI control Nozzle MCC

920129 A92345 91012; 123 N N combusl conlrol Nozzle MCC

Main_injector Powerhead HPFTP HPOTP LPFI'P LPOTP Engine_
Shutd?_q

Injector Powerhead HPFTP HPOTF LPFTP LPOTP 299.880

Injector Powerhead HPFTP IHPOTP LPFTP LPOTP 123.450

920129 A92345 910128 123 N N combusl control Nozzle MCC

920129 A92345 910129 123 N N combusl control Nozzle MCC

Injeclor

Injeclor

Powerhead HPFTP HPOTP LPFTP LPOTP 123.450

Powerhead HPFTP HPOTP LPFTP LPOTP 123.450

.,Field Name Variable Type

job_submitdate integer4
test id char(9)
date integer4

engine# integer4
cpids char(1)
fpids char(t)

Combustion_Devices varchar(20)
Controller varchar(20)

Nozzle varchar(20)
MCC varchar(20)
Main_.lnjector varchar(20)
Powerhead varchar(20)

HPFTP varchar(20)
HPOTP varchar(20)
LPFTP varchar(20)
LPOTP varchar(20)
Engine_Shutdown float4

Comment

yymmdd (date submitted to EHMS)
unique test identifier

yymmdd (date of actual test)

unique engine part number

combusion devices part string
controller part string

nozzle part string
MCC part string
main injector part string
powerhead part string

HPFTP part string
HPOTP part string
LPFTP part string
LPOTP part string

engine shutdown time (seconds)

Figure 7-1 test_info Database

Cb

r_

Implementation 43

Section 8 -Implementation

Hardware System

The PTDS system was developed on a Sun SparcStation 1, with an extemal SCSI hard

disk drive of 1 Gbyte. The system is designed following UNIX open system

standards, so may be easily ported to a variety of UNIX workstations, and users may

make use of the X Window client server architecture to view results from a variety of
UNIX workstations, X terminals or other monitors running the X Window •software.

Commercial Software Packages and Languages

Three commercial software packages were used in the system.

• Nexpert Object, from Neuron Data was used to encode HPOTP expert system rules.

At the time of this choice, (1988), CLIPS was eliminated from consideration by
NASA because it was still relatively new and there was uncertainty about its

performance characteristics. Nexpert Object has a graceful graphical

programmers interface, and makes backward chaining systems relatively easy to
encode. It has an embedded interface to Ingres.

Ingres relational database management system. It was felt that the discipline and

safety provided by a relational database management system would be a valuable
addition to the system, since easy and dependable access to data was at the heart

of the system. Ingres was 'already in use by NASA so it was selected for the PTDS

for consistency. While relatively slow in loading test data (up to one hour) speed

was not a major issue, since this process is performed ovemight and will finish by
the time the users need to review the results.

• PV-Wave display package from Precision Visuals. After evaluation of PV-Wave,
DataViews and TAE+, PV~Wave was judged by end users to have most of the

display features that they felt were important. This package handles the display
of two dimensional (mainly time series) graphs.

The user interface package was written using the XllR4 and Motif Version 1.1

toolkits in Motif-compliant C code. Windows managed by PV~Wave were called
from the basic user interface where required.

Science Applications International Corporation

Implementation 44

The feature extraction modules were written in C, for speed and access to C's

mathematical libraries. The expert analysis for preburner pump bistability was also
written in C.

Size of the System

•i_ i_!_,_ii_

Slightly more than 1000 Nexpert rules were written. These rules provide feature
filtering to eliminate uninteresting features from further consideration, handle

diagnosis of HPOTP balance piston problems, do the final HPOTP prebumer pump
bistability diagnosis, and analyze HPOTP seal problems.

. Science Applications International Corporation

• , , : _ • _ _i _ ,, ? , _, • ,,

/ •

_, , i _

Section 9

.c. Introduction

Anomaly Database 45

- Anomaly Database

The Anomaly Database of the SSME Post Test Diagnostic System gives rocket engine

analysts an efficient, easy-to-use mechanism for tracking engine performance

troubles. With the Anomaly Database, analyst experts may perform any of the
following tasks appropriate to their responsibilities:

• after a test and data review, log and categorize any anomalies in SSME test data,
along with expert assessments relating to the anomalies, actions taken, and the
corroborating sensor data, if desired.

• retrieve data describing previously observed anomalies for analyzing pattems in
engine performance

• retrieve all examples of classes of anomalies along with experts' determination of
their causes for the purpose of training new analysts

The Anomaly Database is divided into two parts: the Ingres database itself which

contains basic information about the type of anomaly observed along with sensor

trace or traces which exhibit the anomaly most clearly; and a graphical user interface

which provides a menu-driven front-end to the database so that the analyst does not
need to remember details of how the data was stored or organized.

The database administrator is the only person to have direct access to Ingres
commands. Other users will add, modify, retrieve, and delete records from the

database via the graphical user interface according to their own particular access
privileges. These access privileges are established by the database administrator and
the system administrator.

The System Requirements section discusses the computational requirements for using
an Anomaly Database system. Both hardware and commercial-off-the-shelf software
requirements are included.

The Overview section contains a description of graphical user interfaces in general,
how to use the mouse, manipulate windows, and invoke the Anomaly Database. This

section demonstrates the general training required for the average user.

Science Applications International Corporation

:i •¸

i_, !?

:(

Anomaly Database 46

The Organization section gives an overview of the organization of the graphical user

interface, and through it, the functional organization of the Anomaly Database. It

includes a discussion about each functional group within the graphical user interface,

a description of the edit modes available, and a description of the types of actions
which the user takes in logging or retrieving anomaly data.

Browsing the Database provides a detailed description of how to browse through the

anomaly database and retrieve appropriate data for viewing or printing This section
covers the Read option provided by the graphical user interface.

Updating the Database provides a description of how to add, delete, or modify
textual information and associated digital sensor data in the Anomaly Database. The

Add, Modify and Delete options provided by the graphical user interface are made

available only to those users with permission to alter the contents of the Anomaly
Database.

The section Administering the Database provides a description of how the database

administrator may access the underlying Ingres tables to alter the categories of
anomalies, change user permissions, and the like.

System Requirements

The Anomaly Database resides on a Sun SparcStation 1 running SunOS 4.1.1. This

machine is equipped with a large hard disk which also contains the database

ssme_data. The Anomaly Database and the ssme data database share some

basic test information, and digital sensor data requested for entry into the Anomaly
Database is fetched from ssme data in order to ease the data entry burden on the

users. The Anomaly Database requires the following Commercial Off-the-Shelf
(COTS) software packages:

• Sun Operating System SunOS Version 4.1.1

• X Windows Version X11R4 or later

• Motif Version 1.1.1

• Ingres Version Release 6.4

• PV Wave Version 3.1

?

Science Applications International Corporation

•i • i ¸ >,'•) _ i,̧ •:I _<:

Anomaly Database 4 7

,'i,_:,_ : ,i

< _ ,,,i ¸ ._

/iii / •

i >< ; :

Overview

This section describes how users are oriented to working with graphical user interfaces

(GUI's) in general and the Anomaly Database GUI in particular. Topics include

inputting commands via the mouse, manipulating windows, and invoking the
Anomaly Database program.

A Glance at Graphical User Interfaces

Graphical User Interfaces greatly extend the productivity of users by providing a

seamless and uniform front-end to applications. Windows, buttons, and text guide the

user effortlessly through an application without exposing the complexity of the
underlying system.

A GUI typically provides what is called window-based mouse-driven functionality. A
window provides the user with a direct link to an application. The application will

display graphical objects, such as buttons, menus, text, and/or graphics, in the window.
Some of the objects which appear in the window wait for the user to activate them

whereupon they will signal the application that it must take the action associated with
the object. For example, upon activation, the [QUIT] button will cause the

application to stop running. A mouse provides a mechanism for selecting a window,

and activating graphical objects within the window for the purpose of interacting with

an application. Additional information on mouse features and functionality, and
window attributes may be found in Appendix C - GUI Features.

Invoking the Anomaly Database

To invoke the Anomaly Database, users are instructed to first log onto a workstation

or X-terminal. and (perhaps remotely) login to the machine containing the anomaly
database. Once logged in, the display environment variable is set to the machine

where the graphical user interface will appear. For example, if the machine the user is

logged onto is named "sunxterm" and the host machine for the Anomaly Database is
named "canada", then the user would perlorm the following operations:

rlogin canada

setenv DISPLAY sunxterm:O.O

The application is invoked as _llows:

anomaly

Science Applications International Corporation

J

Anomaly Database 48

' i̧ ¸ i

i,._.: _'' _.,

: - i_ _:

L

The Organization of an Anomaly Database Window

The windows brought up by the GUI allow the user to specify what tasks need to be

done, and to furnish the required information with a minimum of keyboard entry.

The user fills in various fields on the window, edits and corrects them as necessary,
and when satisfied, the user issues a command which then sends the request off to the
database management system. (Before the "go" command is issued, the user's work

as displayed on the screen can be thought of as local notes for an unsubmitted

request.) When the requested information has been retrieved, the program will

display it, usually on a window quite similar to that used to formulate the request.

Fields

Some areas of the screen are available for the user to enter material by typing or by
choosing menu items. These are called "fields" or active areas. The graphical user
interface has been designed so that if information is called for from the user, the field

is active. In cases where information is not needed from the user, the area will not be

active. Generally, when the program is providing information to the user, the area is

not active. When the user is providing information to the program, the area is active.

• ? ,

. ." -

Other Window Attributes

A top bar, just underneath the title bar, allows general commands. The leftmost

button activates a short menu that either clears the screen of all user-entered material

(useful when a user has finished looking at one record and is ready to request
another), and the command to "quit" the program. The next button to the right issues

the "go" command when clicked. This button submits a request to the database
management system, based on the information on the screen.

All full-sized windows have a status line. This line provides information about what

task the program is currently pursuing, or gives the status of the program. This line
tells the user at a glance whether the program is waiting for information from the user,

or is retrieving data, a process that can take several moments, if the amount to be
retrieved is large.

Browsing the Database

Any request to retrieve information from a database management system is called a

query. This user interface has been set up so that mentally, the user is requesting

"show me "all anomalies that have characteristics that match up with the fields I have

filled in on the request screen." Any time a field is left blank, this means that there is

no restriction placed upon the list of anomalies retrieved, based on that field. For

Science Applications International Corporation

i: _ i

• i "¸

• ._!' '! _ i¸

Anomaly Database 49

example, if all the fields were left blank and the [GO] button was clicked, the request
would be for all anomalies in the database, a long list. If the tene £d field were

filled with "A20531", then all anomalies that happened in that one particular test

would be retrieved. (In English, the query would be "fetch all anomalies with test

number A20531.") A user might wish to retrieve all green run violations. In this

case, the user would move the cursor to the [Spee Violation] menu button, and
choose GREENRUN to fetch all anomalies classified as green run violations.

In general, if one wishes to retrieve one particular anomaly, the simplest way to find it,

without retrieving a large number of other anomalies that must be browsed through as
well, is to fill in the fields that will place the most severe restriction on the list

retrieved. Suppose, for example, one remembers that there was an interesting
anomaly that happened sometime in 1990, involving a "start confirm" violation, on
engine 0213. One also recalls that there are only a few "start confirm" violations in

the database. If only the engine number and the year were specified, the query might

retrieve a long list of candidate anomalies. Since there are only a few "start confirm"

anomalies, however, that is the strongest criterion to use, and one should specify that
criterion, perhaps without even bothering to add the engine number and date criteria.

One could merely set the [Spee Violation] menu button to ST CONFIRM without

typing anything in the date or engine number fields, and click [GO]. Whenever the

program returns a list that is too long to examine conveniently, the user may retum

to the read window and add other restrictions on the list and issuing another [(30]
command. This allows the user to browse a shorter list.

Preparing the Query

The user first clicks the [Edit Mode] menu button in the middle-left of the screen,

below the status line, and sets it to Read if it is not already set.. If the screen is full of

material from previous work, select Clear from the Options menu button in the

upper left of the screen, which clears all fields. The status line will read: "Ready for
a new query" when the screen is clear and is set in Read mode.

The user then enters facts about the anomalies to be retrieved by filling in data in
fields that look indented, or by making menu choices in fields with menu buttons.

Fields that are not active can not be used by the database management system to
specify which anomalies to fetch. The exact entries in the various menus can be

altered by the database administrator as the needs of the Anomaly database change.
The contents of the user interface menus themselves are kept in Ingres tables for
convenient administration.

Some specifics about the contents of each field in the Read (query) screen follow.

Science Applications International Corporation

H

Anomaly Database 50

Test Number

The test number of the anomaly being searched for is one of the best restrictions to

place on an anomaly search. The test number must be typed as a six character field,

beginning with a capital A, followed by a five digit number. No dashes are allowed,

and all test stands are now identified as A's. For example, A2-531 must be entered as
A20531. Test B 1-077, or 904-077, must be entered as A40077.

Test Date

If the date of the test is known, or even which month or year, this information may be
used to shrink the list of anomalies retrieved by the request. The date must be entered

as an eight character string composed of two month-digits, a slash, two day digits,
another slash, and two year digits. To specify only part of the date, one may uses the

character "?" to stand for "anything" in some parts of the date. For example, a query

including "02/12/90" would retrieve only tests conducted on the 12th of February,
1990. A query with the date field filled in as "??/??/91" would retrieve all tests

conducted in 1991. A query with the date field set to "06/??/90" would retrieve all

tests in June of 1990. This capability to use "wild-card characters" allows some

flexibility in specifying a date, when an approximate date of an anomalous test is
known°

J

Engine Number

In order for a query to retrieve anomalies by matching on engine number, the engine
number must be entered with the full four digits. If the leading digit is a zero, it must

be entered. (A search for engine number "213" will not produce any anomalies,

since the engine number has been entered as "0213" in the database and the system
requires a character-by-character match..)

Anomaly Title - Location

This field is a menu button. The Location button allows one to specify whether the

anomaly was in a sensor, a particular LRU, or a system problem. Specifying this field

in a query allows one to choose, for example, to browse through all sensor problems,

or all HPOTP problems. If LRU is chosen, then the rest of the query screen will
change to allow the user to specify more about the LRU. All menu buttons start out

labeled BLANK in Read mode, which means that no restrictions will be made on the
anomalies retrieved, based on this field. If another menu entry is chosen, then it
becomes the label on the menu. This allows a user to see what has been chosen.

Science Applications International Corporation

....... : _ . ? "_'_i̧ ' iii,i"i

Anomaly Database 51

Anomaly Title -Type

This field is also a menu button, and allows the location of the anomaly to become

more specific. The contents of the menu in this field are context sensitive. They
depend on the choice previously made by the user in the Location field. If this

menu is not needed (for example, if the location field was left blank) it will not be
active.

If the user chose LRU as the basic location of the anomaly, then a list of LRUs will

be offered under this button. If the Location choice was Sensor, then this field

would be used to specify which LRU the sensor was monitoring. (For example, to
investigate how many times pressure sensors on the HPFTP have yielded anomalies,
one could choose Sensor for location, and HPFTP for Type.)

Anomaly Title - Sensor Type

This menu allows the choice of all anomalies for a particular type of sensor; for
example if one were interested in tracking all problems in pressure transducers on the

high pressure fuel pump, one might pick pressure in this field, LRU for location,
and HPFTP for Type.

Test Phase

This menu allows the selection of a test phase (prestart, mainstage, and the like)

Engine FIt/Dev

This menu allows users to specify whether they are interested in anomalies for flight
engines or development engines. Leaving it in the blank condition means the
anomalies retrieved are not limited to one or the other.

LRU FIt/Dev

This menu allows users to specify whether they are interested in anomalies for flight

LRU's or for development LRUs. Leaving it in the blank condition means they do

not wish to specify one or the other, and thus they would receive anomalies occurring
in both flight and development LRU's.

Spec Violation

If the anomalies being sought were Spec Violations, the user may wish to specify one

particular type of Spec Violation. Clicking on the menu button displays a list of Spec

Science Applications International Corporation

ii: ' ,_ii_

/ _ii _

' .t '

Anomaly Database 52

Violation choices (such as Greenrun, ICD, ICC, Max Qual, Min Oual, etc.)

User Info

The database automatically records the logname of the person entering each record,
and the date upon which the anomaly was entered into the database. These search

fields are mainly for the convenience of users who are editing records in the database.

Submitting the Request

Once the request screen is satisfactory, the user clicks the [Go] button on the top bar.

This submits the request. The Status line keeps the user up to date on the system's

progress in performing the command, and changes the message as various steps are
completed..

Error Messages

When one of the filled-in fields does not agree in format with that expected by the
database management system, and the query can not be submitted, a window will

display a suggestion to the user for editing one of the fields. To fix the problem,

close the suggestion window containing the error message and the suggestion for

correction, then move the cursor to the field that needs altering. To erase the field

and retype, double click on the field and type over the old material. Or, place the

cursor after the characters that need to be changed and backspace over them.

Examining the Results

When the user's request has bccn proccssed, the Status line informs the user how

many anomalies satisfied the request. If the list contains more than one anomaly, a
new window pops up labeled "Records that matched the read query".

The summary list of anomalies retrieved shows test number, anomaly location, type

and problem. This summary information is intended to be just enough to help
choose which items to examine in more detail.

A user scrolls through the list and clicks on an item to be examined in more detail. It

is displayed by selecting the [Load] button on the upper left of the new window. The

smaller window disappears and the primary window is loaded with information about

the selected anomaly. Since there is not space on the screen to display all the textual
material that may be part of the anomaly record, some information is stored "behind"

buttons. For example, clicking on one of the [Free Form Text] buttons will pop up
a window containing the paragraph(s) stored under that heading.

Science Applications International Corporation

Anomaly Database 53

t

i • _• i.;

To view another anomaly from the list of anomalies retrieved by the previous query,

select [Read Selection], a new button which automatically appears directly under
the [Read] button in the upper left part of the working screen, beneath the status

line. This retums the "Records that matched the read query" window to the screen,
where another anomaly may be chosen for further inspection.

Viewing Pid Data

If data was stored when the anomaly was entered, a user may graphically view the data
that was chosen to illustrate the anomaly. The data available is that data that the

person entering the anomaly felt was relevant and instructive. Not every anomaly has
data stored with it. If the [Data Stored] button says "Yes", then clicking on PIDs
and Data brings up an auxiliary window.

The initial data display shows the full time segment chosen for storage by the person
entering the anomaly. If a user wishes to view a shorter time segment in order to

examine minute details, the time axis may be changed by clicking in a time field and

entering a different number. Most people choose initially to view the full time period
in the database, however, in mosi. usage scenarios, the user's first choice will be to

select which pids to view. To view a pid, the user simply clicks on it in a Select

From scrolled list, and the name and number of the chosen pid will automatically
"hop over " from the Select From list to the Use list. When the user is satisfied

with the Use list, the [View] button in the upper left of the window is clicked. This

causes the database management system to retrieve the numerical data and display it
in a scrolled graphical viewing area..

Depending on how man), pids were chosen, not all of the graphs may be visible at
once. To examine hidden graphs, a user simply "grabs" the scroll bar with the mouse

and moves down in the graphical display.

Choosing many items means that the y axes may become somewhat compressed, in
order to accommodate the large number of graphs. If the charts are too small for

easy viewing, a user simply returns to the Pids and Data window and selects fewer
pids into the Use list. Users may shift back and forth between the Pids and Data

list and the graphical display at will, so that it is possible to choose to view several
different displays of data for the same anomaly.

When the user is done viewing the data, selecting Close retums to the main window
showing the anomaly.

Printing an Anomaly

To make a printed copy of one anomaly, or the whole list of anomalies satisfying the

conditions posed by the query, the user clicks Read Selection, under the [Read]

Science Applications International Corporation

Anomaly Database 54

!• i• ¸ ' , 'i

button in the upper left of the screen, and moves the cursor into the "Records that

matched the read query" window that appears in response° In this window, choosing
Print yields a printed copy of the single anomaly currently being viewed, whose

summary line appears in the bottom Selected box. Choosing Print All yields a

printed copy of all the anomalies in the list of records that matched the read query.

The printed reports contain all information stored for the query, except the graphical
pid data. The full text of the long fields, hidden underneath buttons on the user

interface screen, appear in the printed version, appropriately formatted..

Updating the Database

Adding new anomalies, and deleting or modifying existing ones are done with the

Add, Delete and Modify commands. Most users of the database will not have write

permission and will mainly bc concerned with retrieving and analyzing existing
anomaly data.

The ADD Command

The add command allows the user with appropriate permission to write in the

database. A user may select Add from the [Edit Mode] menu button, to the left of

the screen, beneath the status line. If a user does not have write permission, the Add
command will be grayed out and inactive.

There are three types of fields that accept data entry: menus, short-entry fields, and
free-form text windows. Menu fields behave similarly to Read window menus. The

user clicks on a button, sees a list of possible choices, moves the cursor to the
appropriate choice and clicks.

SHORT ENTRY FIELDS

Short entry fields accept a limited number of characters as input. These fields look

like indented areas on the screen. In these fields, the user places the cursor upon the
field area and clicks to activate the area. In some cases, the user interface software will

perform some validity checks on the material typed into these fields before

transmitting the database transaction to the database management system. If a

problem is detected, the user interface software will bring up an informational window
noting the problem and offering a suggestion for fixing it.

FREE FORM TEXT WINDOWS

Free form text windows appear as buttons on the screen. When the cursor is placed

upon one of these buttons, and is clicked, a subsidiary window appears, with an

Science Applications International Corporation

/ i, ¸_ ',. :_ _. , .. • , • . • : "'_: :i ¸_¸I:I

Anomaly Database 55

:_i i. '¸ :

(empty, in this mode) text entry area. To activate the area, the user clicks on the area.

It then becomes highlighted, showing it is active. The window behaves as most

"WYSIWYG" (what-you-sce-is-what-you-get, or "whizzy-wig") text editors. A user

may type sentences with no carriage returns, and the software will automatically
perform smart line-wraps, breaking sentences appropriately between words. The user

may backspace over characters to delete them, or may mark a section of text for

replacement by placing the cursor just in front of the first character to be replaced,
holding the mouse button down while moving the cursor to mark the entire area to be

replaced, and allowing the mouse button to come back up after the appropriate area
has been marked. At this point, simply typing replacement text will overwrite the

marked material. Or, if the materi',d is not to be replaced with anything else, a single
stroke on the delete key will eliminate all marked material.

If material is to be inserted, the cursor is placed in front of the character the material

is to precede, and the user begins typing. The typed characters will appear to the left

of the cursor. To append additional material to the end of material previously

entered, the cursor is placed behind the last material entered, and text entry continued.

Formatting the Anomaly to be Added

The graphical user interface is designed to minimize typing wherever possible. This

not only speeds anomaly entry and minimizes user input time, it lessens the
opportunity for typing mistakes. Wherever data already exists in machine-readable

form, the user interface will draw upon data already entered. Much of the material to

be entered is new, however, and must be entered from the keyboard. Anomalies may
be entered using the graphical user interface so long as the data for that test has

already been stored in the lngres ssme_data database. The user may begin by filling

in whatever fields are easiest. Usually, data entry begins with the test_id, since the user

interface's automatic data retrieval features require the test_id.

Test_id and other fixed fields

The test_id must be entered as a capital A followed by five digits. The database

already has knowledge of the test date and correct engine number for this test, and

the system will automatically retrieve it. The user may submit the add request with
these fields left blank, and the system will fill them in.

Anomaly Location, Type, and Problem

These fields are menu fields. The user entering an anomaly should pick the most
appropriate menu selections. If the Location was Sensor, an additional menu will

appear to allow the user to specify what type of sensor gave the anomaly (flowmeter,
pressure, temperature, etc.)

Science Applications International Corporation

Anomaly Database 56

Power Leve

Any floating point number may be entered for percent power level.
between 0.0 and 109.0 are most likely.

Numbers

Test Phase, Engine FIt/Dev, LRU FIt/Dev

These menu fields must be filled in by the user. (Since engines and LRUs may

change status from flight to development, the correct status must be entered by the
user for each anomaly.)

Spec Violation

If the anomaly was a spec violation, the user should choose the Yes option in this

menu field. When Yes is chosen, two more fields automatically appear. One is a
menu button offering, as options, all types of spec violations. The other is a button

that opens up a free tbrm text window called Violation and Criteria which can
accept up to 80 characters of commentary.

Assessment, Analysis Results, Actions Taken

These three fields are free form text entry fields. Clicking on the button opens a
window suitable for text entry. Clicking in the text entry area activates it for use. The

maximum length of each of these free form text fields is 1500 characters, which is
about 25 lines of text.

When the text window's contents are satisfactory, the user closes the window by
clicking its [Close] button.

Anomaly Time, Anomaly Duration

Two short entry fields are positioned following their labels. These fields accept
floating point numbers. If identifying an anomaly time and/or duration is not

appropriate for the anomaly being entered, these fields may be left blank.

Pid Info

Supporting data may be stored with the textual material, for future viewing, by
selecting the menu choice Yes under Pid Info, and then selecting [Pids and Data].

This activates a new window, PIDs and Data which provides a menu listing all pids

available in the ssme_data database for the test_id specified. This list is usually quite

long, so it appears in a scrolling window. The scroll bar is "grabbed" by the user, by
pressing down the middle mouse button and holding it down while moving the scroll

bar up and down to change the viewing area onto the (long) list. When an interesting

Science Applications International Corporation

Anomaly Database 57

area is in view, the middle mouse button is released. Pids are actually labeled in the

database by an alphanumeric string, rather than with a simple number, and so appear

on alphanumeric order in the list rather than numerical order. (91 and 911 may
appear next to each other in the list.) Full sample data ids appear as numbers with no

suffix, one-second average data appears as the same number as full sample, but with a
lower case "a" appended. (Pid "63" is full sample data, pid "63A" is one second

averaged data covering the same time periods.) If the database contains data taken at

a rate slower than 1 Hz, this data will appear labeled with a suffix "s" for "slow", for
example "63s".

The pid list scrolls both horizontally and vertically, since some of the labels are too

long to display fully in the menu window. The labels associated with each pid
number are those from the MSFC format file used to populate the Ingres database.

Viewing Data to Aid in the Storage Decision

The user interface allows data for selected Pids to be viewed or stored. This helps to

determine the best pids and time slices to store to illustrate the anomaly being

recorded. Prior to storing data consult with the database administrator for suggested
limitations on how much full-sample or one-second average data should be stored.

A user group's common practices will be guided by how much hard disk storage
space is available.

Saving the Graphical Data

Once the graphical data has been selected, click Save to indicate that the choices of

pid numbers and the time span of the data is correct. This will cause the auxiliary
PIDs and Data window to close. The system will make a copy of. the selected
graphical data in the anomaly database tables from the ssme data tables, since

ssme_data tables are regularly purged for space reasons, an_the anomaly data is
expected to be available for much longer periods of usage.

User Information

The logname of the person entering the anomaly and the time of entry is
automatically stored in the database. These fields are useful in editing anomalies. An

anomaly administrator may recall some additional textual material to be added to an

anomaly entered previously. In this situation, a very simple read request may be

issued to retrieve, for example, "all anomalies entered yesterday by myself, and editing
of the desired anomaly may continue. It is also useful to know who composed the
comments so that informal discussions may be initiated with the author.

Science Applications International Corporation

,_i ', _i

:',i ¸ ,•,:i, :

il_iii_• •:
!•i_/ _i̧

i i: "

., :: _i ,ii _ • i

• L•

?

Anomaly Database 58

Submitting the "Add" Request

When the screen is filled with all desired information to be added into the anomaly
database, the author clicks the [GO] button in the top left comer. This will submit the

addition. If by chance some typed material does not satisfy the formatting
requirements of the database management system, an informational window will

appear telling which field caused the problem offering a suggestion on changing its

contents. No part of the record can be accepted by the database management system
until all fields satisfy formatting requirements. When no informational windows

appear after clicking the [GO] button, the user knows that the record has been
successfully entered into the database.

The MODIFY Command

This command allows a modification of existing records in the database. When

beginning with a cleared screen, the delete and modify menu choices in the Edit

Mode box are grayed out and thus inactive. An anomaly must be selected to modify
and bring it onto the screen before invoking the Modify command.

Identifying the anomaly for modification

Using the Read command as discussed above, the anomaly to be modified is located.

It is not necessary to issue a query that will bring back only one anomaly. A query
may be issued at any time to return a list of anomalies into the summary list screen

containing the desired record. Individual records are selected for detailed viewing
until the correct anomaly to be modified is found. Whenthe anomaly to be modified

is loaded on the screen, the user returns to the Edit Mode box and changes the
menu choice from Read to Modify.

Changing Contents of Fields

Any field changed by the user on the screen will be changed in the database, once

the [GO] command is issued. Until then the screen contents may be thought of as a
scratch pad, where preparations are being made.

Short Entry Fields

Short entry fields look like indented areas on the screen. There are several ways to
modify the contents of these fields. One method is to place the cursor in the field and

double click the mouse. This "double-click" highlights the entire field and has the

effect of erasing the field area so that the user may retype the area without

backspacing over existing material. Another method is to place the cursor after

Science Applications International Corporation

Anomaly Database 59

-/

• i: ¸

!

characters to be changed, backspace over them and retype them. Any other
WYSIWYG editing functions may be used as well.

Menu Buttons

Menus are active and selectable, once the edit mode has been changed to Modify, so
a user simply opens the menu by clicking on it and changing the choice from the one

that was originally displayed on the button to the new choice. When the new choice is

made by clicking, the menu button will display the new choice.

Long Text Fields

Clicking on the label of a long text field causes a window to be opened containing the
text as it currently is stored in the database. Clicking in the window activates it for

change, highlighting the text area. Changes to the module may be made with
WYSIWYG editing features described earlier.

Replace the Modified Anomaly

To replace the old version of the anomaly with the new one as currently displayed on

the screen, the [GO] button is selected. If the software detects difficulty with the

formats of any of the changes, an informational window will pop up with a

description of the problem and a suggestion for solving it. The change to the

database can not be made unless the database management system's formatting

requirements are satisfied completely. If an informational window pops up, the user

reads the information, closes the window, makes the changes required in the anomaly
data entered, and clicks [GO] again.

Since modifications are permanent changes to the database which make it difficult or

impossible to get the old version back, a verification window will prompt for
verification that the change is desired. This helps guard against accidental clicks on

the [GO] button. After the user has verified that the changes are desired, the

transaction will be performed. The status line provides information that the
modification has been accepted and performed.

The DELETE Command

This command allows the administrator to delete existing anomaly records from the
database. When beginning with a cleared screen, the user will notice that the Delete

command is grayed out and inactive. This simply means that a Read command

must be done first, to bring the anomaly into the work area prior to deletion.

Science Applications International Corporation

_b

Anomaly Database 60

Identifying the Anomaly to be Deleted

Using the Read command as described above, the anomaly to be deleted is brought

into the work area. If the query returns more than one anomaly, an anomaly is
selected from the summary screen. When the anomaly to be deleted is located, it is

loaded onto the screen. In the Edit Mode box, the edit mode is changed from Read
to Delete by clicking on Delete.

Deleting the Identified Anomaly

Once in Delete mode, the [GO] command on the top command bar is selected. A

popup window then requires confirmation that deletion is truly intended. This guards

against accidental clicks of the [GO] button, since it will be difficult or impossible to

retrieve an anomaly that has been mistakenly deleted.

Administering the Database

Although basic system administration tools are being internally developed by NASA

LeRC, and Ingres database administration tools are available as part of the commercial

software acquired, the administrator of the anomaly database needs an understanding

of the anomaly database design, in order to make good use of the tools. This section

is intended to provide the necessary additional information. It assumes that the

database administrator is already familiar with the basic Ingres database

administration techniques and tools.

Table Design and Location

The anomaly database tables are located in the Ingres database ssme data. This is

the same lngres database that contains the test data and results used by expert system

modules. The anomaly tables are placed there to avoid time-consuming opening and

closing of databases when users with "add" permission are entering new data.

The anomaly database stored its data separately from the data in the other data tables,

but the user interface pulls information such as LRU numbers and test date directly

from other tables in the ssme data database during anomaly entry, to save the
user extra typing, wherever possible. This both saves time and frustration for the user,

and avoids opportunities for additional human error.

The anomaly database keeps separate copies of all information it needs, rather than

pointers into the other tables, because we expect that the anomaly database will stay
intact for a long time, whereas the administrator of the ssme data database will

Science Applications International Corporation

Anomaly Database 61

. ,i, _ ':i

i:I _:,.

•/<

regularly delete or archive the large data files in the ssme data data tables, because

of space limitations. The anom_.info table contains all-the information about the

anomaly except that required to support the display of relevant pid data, and the
paragraphs of free form text that are allowed for analysis, assessment, and actions.

The anom_data_info and anom_data tables contain the information required
to store pid data with an anomaly if desired as well as the actual data.

The contents of the long free-form text entry fields are kept in a separate table,

anom...text, in order to make a longer maximum field length possible. Each text
entry field may have up to 1500 characters.

The contents of user interface menus that the administrator may at some point wish to

change are also in tables; they are anom_.probdescr, anom_specviol,

anom_.testphases, and anom_sensortype. The contents of these menus
govern what the user adding new anomalies may add to the database, as well as what

items a user may use to search the database for previously-entered anomalies.

Managing Database Size

General database administration will be done with tools provided by Ingres and' LeRC.
The anomaly database itself neither has a built-in limit on the size of the database, nor

a watchdog process that monitors the size of the database or the disk space remaining.
If the database grows too large, the administrator must archive and remove some

material. Presumably, one prefers not to remove anomalies themselves. Therefore

the best candidates for removal are probably supporting pid data sets. The

administrator will decide, based on the needs of the user community, which pid data

sets are least valuable. When they have been identified by anomaly number, the

administrator may use the interactive SQL interface or the generic table editor

provided by LeRC to remove records from anom...data and anom data_info,
keying on anomaly number. The administrator must also modi--fy the general

information record in anomaly_info, changing the start-time and stop-time
fields to NULL. The user interface software needs these NULLs as the indication that

there is no data stored with the anomaly.

Menu Item Tables

The four tables containing user interface menus are:

• anom_specviol

• anom_sensortype

• anom_testphases

• anom probdescr

Science Applications International Corporation

Anomaly Database 62

¸,7['¸ ./,

,,i II! _] '.,

Anom_specviol

Anom_specviol contains the menu allowing the user to choose which type of
spec violation occurred, if a previous menu indicated that a spec violation indeed

occurred. This table has one field, named violation. At delivery time, this table
contained:

GREENRUN

HOTFIRE

ICD

LCC

MAX QUAL

MIN QUAL

REDLINE

SOFTWARE

ST CONFIRM

Table 9-10.., Contents of table anom specviol

Anom_sensortype

Anom_sensortype contains the menu allowing the user to categorize which type of
sensor the problem occurred in, if a previous menu indicated that a sensor fault
occurred. It has one field, sensor. At delivery time this table contained:

•1

Accelerometer

Control Flag

Drag On Cable

Flow Meter

Pressure

Pump Speed

Strain Gauge

Temperature

Valve Position

Table 9-11: Contents of anom sensorWpe table

Anom_testphases

Anom_testphases contains the menu items designating which phase of the test

the anomaly occurred in, if desired. This table has one field, phase. At delivery time,

Science Applications International Corporation

Anomaly Database 63

', ii, _

i ¸.¸¸ '

•5

this table contained:

Mainstage

Prestart

Shutdown

Start

Throttle

Table 9-12: Cootents Qf table anom testr_hases

Anom_probdescr

The most complex menu table is anom..,probdescr, since it contains the contents

of three hierarchically nested menus. Anom_probdescr has three fields;

Anomaly_location, Anomalytype, and Anomaly_problem. which correspond
to the Location, Type, and Problem menus on the user interface. Entries in the
Anomaly_location field list the possible areas of an anomaly. These areas can be

broken down into Types, which are listed in the Anomaly_type field. These types
can again be broken down into specific anomalies which are stored in the
Anomaly_problem field. The current set of combinations for these three fields are

shown in Table 9-13. Using the deliver-time contents of this table as an example, we

can see that the first field contains the first menu choice, the second field contains the

second, and the third field contains the "bottom", most specific, menu choice.

Anomaly

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

Location Anomaly Type

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Combustion Devices

Controller

Anomaly Problem

MCC Fuel Leak

MCC Liner Cavity

MCC PC Delta

Main Injector Hot Gas Inj Pressure

Main Injector Delta P

OPB Pop

OPB Purge Pressure

Powerhead Hot Gas Leak

Powerhead LOX Leak

Powerhead Contamination

DCU-A Halt

Science Applications International Corporation

?

L

C!I :_i

.•%

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

LRU

Controller

Controller

Controller

Controller

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

HPOTP

LPFTP

LPFTP

LPFTP

Anomaly Database 64

DCU-B Halt

IEA Failure

OEA Failure

OEB Failure

HPFP Balance Cavity Pressure and Discharge
Temp

HPFP Coolant Liner

HPFP Drain Line Leakage

HPFP Liftoff Seal Drain Line Freeze

HPFP Seal Leakage

HPFP Balance Cavity Pressure

HPFT Cavitation

HPFT Green Run Violation

HPFT Turbine Temp

Balance Cavity Pressure

Bearing Wear

Green Run Violation

HPOP Intermediate Seal Pressure

HPOP Primary Seal

HPOTP Bearing Failure

HPOTP Turbine Temperature

Late Breakaway

PBP Bi-stability

Rotor Grab

Secondary Seal Pressure

Speed Shift

Green Run Violation

LPF Duct Surge

Speed Shift

Science Applications International Corporation

• ... ' _ , • • - •(¸?,,/¸%.¸ _':

Anomaly Database 65

_ _i: ¸

LRU LPOTP

LRU MCC

LRU Main InJector

LRU Nozzle

LRU Powexhead

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Engine System Sensors

Sensor Facility Sensors

Sensor Facility Sensors

Sensor Facility Sensors

Sensor Facility Sensors

Sensor Facility Sensors

Sensor LRU Sensors

System Engine System

System Engine System

System Engine System

System Engine System

System Engine System

System Engine System

System Engine System

Cavitation

MCC Problem

Main Injector Problem

Nozzle Problem

Powerhead Problem

Engine Flowmeter Oscillations

Engine Flowmeter Shift

Engine Flowmeter Speed

MCC PC Shift

MC PC Spike

PC Delta Due to Inst

PC Drift

PC Shifts

Special Hex Redline

Turbine Temp

Turbine Tmp Drops Ec

Facility Firex

Facility Fuel Flowmeter Shift

Facility OX Flowmeter Oscillations

Facility OX Flowmeter Shift

Low M/R

Bad Connector

Anomalous Frequence

Electrical Lockup

External Heat Exchanger Fuel Leak

FPOV Position

Fire

Fuel

Fuel Turbine Temp

Science Applications International Corporation

Anomaly Database 66

'!

i

System Engine System HX Discharge Temperature

System Engine System High M/R

System Engine S ystem Hydraulic Lockup

System Engine System KF Delta

System Engine System LOX Turbine Temp

System Engine System Low M/R

System Engine System M/R Shift

System Engine System OPOV Command Limiting

System Engine System Redline Violation

System Engine System Slow Start

System Facility Fac Differential Pressure

System Facility Facility Fire

System Facility Fuel Inlet Pressure

System Facility GN2 Temperature

System Facility He Internal Pressure

System Facility Input Electronics Failure

System Facility LOX Inlet Pressure "

System Valves/Hydraulics AFV Valve Leakage

System Valves/Hydraulics CCV Closure

System Valves/Hydraulics GCV Pogo Precharge

System Valves/Hydraulics LOX Bid Valve Movement Failure

System Valves/Hydraulics MFV MFV Skin Temp

System Valves/Hydraulics PAV FPB Purge Pressure

System Valves/Hydraulics Pogo Precharge

System Valves/Hydraulics Pogo RIV Movement Failure

Table 9-13: Defiverv Time Contents of anom orobde_gr

Adding Menu Items

Adding menu items requires simply using the interactive SQL interface or the generic

Science Applications International Corporation

Anomaly Database 6 7

_i!̧ _,_, ,

i_!i ¸ ,/
H

table editor to insert a record into the appropriate table. Since the user interface

builds its menus from the tables each time the interface is used, the new item will

appear in the user interface the next time it is invoked after the administrator changes
a menu table. The nested set of three menus stored in anom_.probdencr require a
bit more attention. Adding an item in the "bottom" menu (third one the user

chooses) only requires adding one record. That record contains the choices made in

the first and second menus, in order to get to the situation in the user interface where

one chooses the new item being added. If the database administrator wishes to add or

change an item in either the first or second menu, he or she must also specify what is
supposed to appear in all the menus that would appear to the end user after that user

chooses the item being added or modified. If one wished to add a new anomaly type

(for example, a new LRU type called New Thing) in the case where the Anomaly
Location was LRU, and if the possible Anomaly Problems with a New Thing are
Overheating, Rubbing, Icing and Seizing, then one would add four records to

the anom_probdescr table:

Anomaly Location Anomaly Type Anomaly Problem

LRU New Thing Overheating

LRU New Thing Rubbing

LRU New Thing Icing

LRU New Thing Seizing

Table 9-14: Additional recorft_ to add to anom Drobdescrtable, ex_mole,

Or, in a different hypothetical example, suppose one were to decide to split the

second menu (Anomaly Type) entry Valves/Hydraulics into two separate

categories, Valves and Hydraulics. One would have to examine the eight records

containing Valves/Hydraulics in the second column, and decide where to place

each of the third-choice menu items (Anomaly Problems). Some would need to be

placed with Valves, some with Hydraulics.

Effect on the Database of Modifying Menus

The menus in the user interface provide the only access for the general user to the

anomaly database. They are used both for entering data into the database, and for

retrieving data. Therefore, if some data was entered into the database using a menu

item which is subsequently deleted or changed, the user has no "vocabulary" for

retrieving those items, by specifying the (missing) menu item in a query. The

database contents must be inspected and perhaps altered, by the database
administrator if menu items are deleted or modified. Adding a menu item does not

require any action on the database itself, since the addition allows new kinds of

records to be added to the database, but does not prevent access to any old ones.

If one deletes an item from a menu because it was not used, and there are no records

Science Applications International Corporation

i_I. • i:

Anomaly Database 68

in the database that contain the field value that was deleted, then there are no
consistency issues to deal with.

Other Administrative Issues

The administration shells written by LeRC will provide assistance in using the Ingres-

provided tools for traditional database administration, such as backups, checkpointing,
adding and deleting users, changing permissions for users, and the like. For a user to

use the anomaly database, the administrator must grant two types of permission. First,
the user must be made an Ingres user. We have granted universal permissions on all

Ingres tables belonging to the anomaly database, but anyone using the database must

have permission to use the ssme data database. The main permissions barrier to

unrestricted user access to the anomaly database is the UNIX group mechanism. The

user interface checks to see if the user is a member of group "anom readonly" or
group "anom_modify". Therefore a new prospective user of the database must be
given Ingres permission on the ssme_data database, and be made a member of one

of these UNIX groups. The graphical user interface of the anomaly database looks

up the permissions of the user running the interface. It grays out and deactivates

commands such as Add which the user does not have permission to perform. When

UNIX and database permissions are changed for a user, the graphical user interface

requires no alteration. The new capabilities are available for the user on the next
login.

Conclusion

The anomaly database system uses a standardized relational database management

system, and keeps the contents of various user interface menus in Ingres tables. It is

expected that this design will allow the database administrator to provide the correct

amount of customizability without excessive complexity. The design goal was for
sufficient flexibility that the database will enjoy years of active use, even in the

continually-changing engineering and computing environment that its users and
administrators face.

i

Science Applications International Corporation

Appendix A - Extending the System i

Appendix A - Extending the System

The following sections describe, in detail, how to add to the feature extractor

command table in order to extract additional features from SSME data. The steps
required in order to add a new feature extraction module are also discussed here.

Adding to the Command Table

The most efficient way to make additional entries in the command table is through
use of the Ingres SQL script load_commands, sql. This script reads the ASCII

file commands, tmp where each new command is represented by a line in the file

with the fields separated by the "@" character. To run this script change directory to
the space on the disk where both the load script and the ASCII command file reside

and enter the Ingres interactive SQL terminal monitor with the command shown
below

%sql ssme data

Once in the interactive SQL environmentissuethe _llowing command

I * \i load_commands.sql

Ingres should issue a message notifying you of the number of rows (commands)
read from the ASCII file.

Adding a new Feature Extraction Module

Like adding a curve fitting model, it is a simple matter to add an additional feature

extraction module. Each module has a name identified by a #define statement in

the file EIIMS features, h. By adding a name to this list and updating the
EHMS_NumF'eatureExtraetionModules to the number of modules currently

supported, a new feature extraction module can be made known to the system.
Before the new module can be executed, an entry must also be made in the routine

EHMS_FeatureExtraetor where the module which corresponds to the defined

name is called with the parameters (if any) listed in the base command table. • Those

modules already implemented should serve as an adequate example for implementing

Science Appfications International Corporation

Appendix A - Extending the System ii

: , =

a new capability. As an example, consider the case of adding the feature extraction

module isSensorPegged. The steps below indicate the operations which must be
performed:

1. Insert the line below in the file EHMS features.h

#define IsSensorPegged n

where n is an integer equal to the number of the last module defined, plus one.

2. Increment the #define value of EHMS_NumFeatureExtractionModules by
one.

3. Insert an additional "else if" condition in the routine

EHMS_ParseTableEntry where themodule stnng read from the command

table is used to assign the corresponding integer from the #define list of module

names. For the current example the addition shown below would be made to the else
if construct.

else if (!strcmp("IsSensorPegged",

extraction_module_str))

*extraction_module = IsSensorPegged;

4. Make an additional entry in the switch construct found in the routine

EHMS_featureExtractor for the new module. For our example this would read as
follows:

"i• • , "i

case IsSensorPegged:

/* Get and convert the types of all params in the

command */

/* call the routine which corresponds to

IsSensorPegged */

break;

Science Appfications International Corporation

AppendixB - Tables i i i

•_i_'i :_,i_
_ i _ :' i¸

Sensor I
Present

Yes

Yes

No

No

Table A.

Sensor j
Present

No

Yes

Yes

No

Three

Sensor
Present

No

No

Yes

Yes

Sensor

k Use

i

J

k

Appendix B - Tables

Redundancy (Missing Sensor)

Postulate

Sensor 'j or k' is missing, using T to continue the
analysis.

Sensor 'i or k' is missing, using 'j' to continue the
analysis.

Sensor 'i or j' is missing, using 'k' to continue the
analysis.

Table B. Three Sensor Redundancy

Compare i j

N

N

D

D

N

N

D

D

Compare j k

N

D

D

N

N

D

N

D

Compare k i Us
e

N i

D i

N i

g j

D i

N i

N i

D i

Postulate

Sensors i, j and k agree, using i for
convenience.

Seen beginning at t = __, sensor k disagrees
with i and j, using i for convenience.

Seen beginning at t = __, sensor j disagrees
with i and k, using i for convenience.

Seen beginning at t = __, sensor i disgrees
with j and k, using j for convenience.

Seen beginning at t = __, sensors i, j and k
inconsistent, using i to continue the analysis.

Science Applications International Corporation

: : i!. :::: i-_i:_" : ¸ ¸
, , ,. , i ¸ 5 . .: , i ! i,

• - _ • ., • _ _ '.5 , • t

: "i • •r:_i• I r: • r • • ,

_°

O

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Diff i, j
(current)

(current)

Table C. Two Sensor Redundanc _

Spike i

' Erratic i

Erratic i

Not

Erratic i

Not

Erratic i

Erratic i

Not

Erratic i

Spike i

No Spike
i

No Spike
i

Spike i

No Spike
i

Feature

Erratic j

Erratic j

Erratic j

Not

Erratic j

Not

Erratic j

Not

Erratic j

Spike j

Spike j

Spike j

No Spike

J

No Spike

J

No Spike

J

No Dlff i, Diff j, j
i, (current),

(current), (previous
(previous))

No DIff i, Diff j, j
i, (current),

(current), (previous
(previous))

No Dlff i, Diff j, j
i, (current),

(current), (previous
(previous))

No Dlff i, Diff j, j

i, (current),

(current), (previous

(previous))

Dlff i, i, No Diff j,

(current), j (current),

(previous) (previous
)

T

Use

i

Postulate

Seen beginning at t = ___, sensorsT and 'j'
show jitter and 'j' does not track

previous test. Using T as the best
value.

Seen beginning at t = __, sensorsT and 'j'
agree. Sensor 'j' shows jitter while

Tdoes not. Using T as best value.

Seen beginning at t = ___, sensors 'j' and
T agree. Sensor 'i' shows jitter while

'j'does not. Using 'j' as best value.

Seen beginning at t = __, sensors T and

'j' disagree. 'j' tracks previous test.
Using 'j' as the best value.

o

.

• : L'• • i •7:1:_•:i:_:'ii ¸¸ _:•̧ - •i

Ell

o

Diff i, j
(current)
(current)

Diff i, j
(current)
(current)

Diff i, j
(current)
(current)

Diff i, j
(current)
(current)

Diff i, j
(current)
(current)

No Diff

i,j
(current)
(current)
No Diff

i,j
(current)
(current)

Table C. Two Sensor Redundant
Feature

Not

Erratic i

Erratic i

Erratic i

Erratic i

No Spike
i

Spike i

Spike i

Spike i

Not

Erratic j

Erratic j

Erratic j

Not

Erratic j

Not

Erratic j

No Spike
i

Spike j

Spike j

No Spike
J

No Spike
J

No Dlff i, i
(current),

(previous)

Diff i, i,

(current),
(previous)
Dlff i, i,

(current),
(previous)
Dlff i, i,
(current),

(previous)
Dlff i, i,
(Current),

(previous)

Diff j, j
(current),

(previous
)

No Diff j,
j (current),
(previous

)

No Diff j,
j (current),
(previous

)

No Diff j,
j (current),

(previous
)

No Diff j,
j (current),
(previous

)

(continued)
Use Postulate

Seen beginning at t = __, sensors 'i' and

'j' disagree. 'i' tracks previous test.
Using 'j' as the best value.

Seen beginning at t = __., sensorsT and 'j'
show jitter, 'i' does not track previous
test. Using 'j' as the best value.

Seen beginning at t = __, sensors 'j' and
T disagree. Sensor T shows jitter
while 'j'does not. Using 'j' as best value.

:3

I

o-

:._ _i̧ !i,., _':_:,-:_:__i_/_:___5_!_- -
- _i.,_ _ , ., _i_ I i,? . -'_ ..

.... _ . ,_ ._. _7 L,

Table C. Two Sensor Redundant

No Diff

i,j
(current)

(current)

No Diff

i,j
(current)

(current)
No Diff

i,j
(current)

(current)
No Diff

i,j
(current)

o

(current)

No Diff

i,j
(current)

(current)

No Diff

i,j
(current)

(current)

No Diff

i,j
(current)

(current)

Erratic i

Erratic i

Not

Erratic i

Not

Erratic i

Not

Erratic i

Spike i

Spike i

No Spike
i

No Spike
i

No Spike
i

Feature

Erratic j

Erratic j

Not

Erratic j

Erratic j

Spike j

Spike j

No Spike

J

Spike j

(continued)
Use Postulate

Seen beginning at t = ___, sensorsT and 'j'
both show spikes or erratic behavior.

Disregard all results using these
sensors.

Sensors T and 'j' agree, using 'i' for
convenience.

Seen beginning at t = ___, sensorsT and 'j'

agree. Sensor 'j' shows jitter while

Tdoes not. Using T as best value.
(1)

t_
0

t_r

,.,.°

_ 4 ¸

? : , ;

, :', IL

Zi :"; ,

,.;.;

Appendix B - Tables

Table 1. Balance Piston Pressure Difference Between Two Tests

Feature

Delta DifferentThan 327-328,
(current), (previous)

Postulate

First noticed at t = __, the difference (327 - 328) is
different at thrust level __, between this test and the

previous.

Table 2. Balance Piston Truth Table

5plk Splk Level Level DeltaLeve
• e Shift Shift I Shift

327 328 327 328 327- 328

+- 0 0 0 0

vii

+- 0 0

+- 0

0 +-

0 0

+ 0 0

+

+

+

+- 0 0

0 +- 0

0 0 +-

0

+-

+-

0

0

+-

+-

0

0

+-

+-

Postulate

Seen at t = _, spike seen in sensor 327 only, with no
change in steady state pressures or pressure difference.

Possible sensor or omni seal anomaly. No real rotor motion.

Seen at t = _, level shift seen in sensor 327 only.
Possible sensor problem omni seal leakage or cup washer

problem. No real rotor motion.

Seen at t = _, possible HPOTP balance piston momentary
orifice change or momentary anomalous rotor motion.

Seen at t = _, possible HPOTP anomalous rotor motion.

Seen at t = __, possible HPOTP balance piston orifice
damage.

Seen at t = _, HPOTP balance piston anomaly may be
unusual rotor motion or orifice change. Same-sign level

shifts in both pressures, with change in pressure
difference as well.

Seen at t = _, statistically significant change in 327 but not
in difference (327 - 328)

Seen at t = _, statistically significant change in 328 but not
in difference (327 - 328)

Seen at t = __, statistically significant change in difference
(327-328) but not in individual sensors

Science Applications International Corporation

• : i__¸i

Appendix B - Tables viii

Table 3. Primary Turbine Seal - Comparing Pressure and Temperature

Feature Feature Feature Postulate

E_-_ai.ic990 Not Erratic No Spike
1190 1190

Erratic 1190

Erratic 990

Spike 990

Erratic 990

Spike 990

Not Erratic
990

Erratic 1190

Erratic 1190

Spike 1190

Spike 1190

No Spike 990

Seen beginning at t = __, HPOTP erratic primary
turbine seal drain pressure may indicate sensor

problem, seal anomaly, or vibration. No effect seen in
drain temperature.

Seen beginnIng at t = __, HPOTP erratic primary
turbine seal drain temperature may indicate sensor

problem, seal anomaly, or vibration. No effect seen in
drain pressure.

Seen beginning at t = _, HPOTP shows jitter in both
primary turbine seal drain pressure and temperature.

Possible seal anomaly or vibration.

Science Applications International Corporation

• t

ii: _

Appendix B - Tables Ix

Table 4.

Feature

Diff 233A,
(current),

(previous)
offset 1

Diff 233A,
(current),

(previous)
offset I

Diff 233A,
(current),
(previous)
offset I

No Dill
233A,

(current),
(previous)
offset 1

Primary Turbine Seal Pressure Peak and

Feature

Peak 990,
(current),

(previous) peak_ht

Peak 990,
(current),

(previous) peak_hi

Peak 990,
(current),

(previous) peak_ht

Feature

Diff 990, (current),
(previous) offset 2

Diff 990, (current),
(previous) offset 2

Diff 990, (current),
(previous) offset 2

Criteria

peak_ht*offset 1>
0

peak_ht*offset2<
Oat turbine seal

equilibrium

peak_ht*offset 1<
Oat turbine seal

equilibrium

peak_ht*offset2>
0 at turbine seal

equilibrium

offset 1"offset2>0
at turbine seal

equilibrium

Peak 990,
(current),

(previous) peak_ht

Diff 990, (current),
(previous) offset 2

offset 1*offset2<0
at turbine seal

equilibrium

Equilibrium Checks

Postulate

HPOTP primary turbine seal
drain pressure peak and
equilibrium values have

shifted in opposite directions
compared to previous test.
Consistent with change in

turbine discharge
temperature.

HPOTP primary turbine seal
drain pressure peak shift

compared to previous test
inconsistent with change in

turbine discharge
temperature.

HPOTP primary turbine seal
drain pressure equilibrium

value has shifted compared to
previous test. inconsistent

with change in turbine
discharge temperature.

HPOTP primary turbine seal
drain pressure has shifted
from previous test both in

peak and equilibrium value.
May be change in seal
clearance or sensor

calibration.

HPOTP primary turbine seal
drain pressure peak and

equilibrium value have shifted
in opposite directions

compared to previous test. No
apparent change in turbine

discharge temperature.

Science Applications International Corporation

Table 5.

Feature

NoPeak 990,
(current)

No Peak 990,
(previous)

Peak 990,
(current)

Peak 990,
(current)

Peak 990,
(current)

Diff 990,
(current),
(previous)

No Peak 91A
(current)

No Peak 91A
(previous)

Peak 91A,
(current)

Peak 91A,
(current)

Peak 91A,
(current)

Diff 91A,
(current),
(previous)

Appendix B - Tables x

Turbine Seals - Comparing to Previous Test

Feature

Peak 990,
(previous)

Peak 990,
(previous)

Peak 990,
(previous)

Peak 91A,
(previous)

Peak 91A,
(previous)

Peak 91A,
(previous)

Compare

peak height

time at peak
height

full width at half
max

pressures at
turbine seal
equilibrium

peak height

time at peak
height

full width at half
max

pressures at
turbine seal
equilibrium

Postulate

Current test HPOTP primary turbine seal drain
pressure peak missing.

Previous test HPOTP primary turbine seal drain
pressure peak missing, therefore no comparisons

done.

HPOTP primary turbine seal drain pressure peak
height has changed by more than 'cut_width'" sigma

between previous test and this test.

HPOTP primary turbine seal drain pressure peak is
earlier or later than previous test by more than

'cut_width' * sigma.

HPOTP primary turbine seal drain pressure peak width
is wider or narrower than previous test by more than

'cutwidth'* sigma.

HPOTP primary turbine seal drain pressure at thermal
equilibrium is more than 'cut_width' * sigma different

from previous test.

Current test HPOTP secondary turbine seal cavity
pressure peak missing.

Previous test HPOTP secondary turbine seal cavity
pressure peak missing, therefore no comparisons

done.

HPOTP secondary turbine seal cavity pressure peak
height has changed by more than 'cut_width' * sigma

between previous test and this test.

HPOTP secondary turbine seal cavity pressure peak is
earlier or later than previous test by more than

'cut_width'" sigma.

HPOTP secondary turbine seal cavity pressure peak
width is wider or narrower than previous test by more

than 'cut_width' * sigma.

HPOTP secondary turbine cavity pressure at thermal
equilibrium is more than 'cut_width' * sigma different

from previous test.

Science Applications International Corporation

i

-i! ¸

Table 6.

Appendix B - Tables

Secondary Turbine Seal - Comparing Pressure and
Temperature

Feature Feature Feature Postulate

Erratic 91A Not Erratic No Spike
1188 1188

Er_aiic 1188

Erratic 91A

Spike 91A

Erratic 91A

Spike 91A

xi

Not Erratic
91A

Erratic 1188

Erratic 1188

Spike 1188

Spike 1188

No Spike 91A

Seen beginning at t = __, HPOTP erratic secondary
turbine seal drain pressure may indicate sensor

problem, seal anomaly, or vibration. No effect seen in
drain temperature.

Seen beginning at t = __, HPOTP erratic secondary
turbine seal drain temperature may indicate sensor

problem, seal anomaly, or vibration. No effect seen in
drain pressure.

Seen beginning at t = _, HPOTP shows jitter in both
secondary turbine seal drain pressure and

temperature. Possible seal anomaly or vibration.

Science Applications International Corporation

i. i_,i__

Appendix B - Tables xii

Table 7

J-eature

Erratic 91

Erratic 91

Spike 91

Spike 91

Peak 91A (to
time of peak)

Feature

Erratic 92

Spike 92

Spike 92

Erratic 92

Peak 990 (t1
time of peak)

Secondary Turbine Seal Cavity Pressure

Criteria

tl > tO;
more than

cut_width*
sigma

Postulate

Secondary turbine seal cavity pressure appears erratic or
spiking at t =. Possible seal or sensor anomaly.

HPOTP secondary turbine seal cavity pressure peaks earlier
than primary turbine seal drain pressure. Possible seal or

sensor anomaly.

Table 8. Seals - Comparing Pressure and Temperature

I-eature

Erratic 951A

Erratic 1187

Erratic 951A

Spike 951A

Erratic 951A

Spike 951A

Feature

Not Erratic
1187

Not Erratic
951A

Erratic 1187

Erratic 1187

Spike 1187

Spike 1187

Feature

NoSpike
1187

No Spike
951A

Postulate

Seen beginning at t = __, HPOTP erratic primary pump
seal drain pressure may indicate sensor problem, seal

anomaly, or vibration. No effect seen in drain
temperature.

Seen beginning at t = __, HPOTP erratic primary pump
seal drain temperature may indicate sensor problem,

seal anomaly, or vibration. No effect seen in drain
pressure.

Seen beginning at t = __, HPOTP shows jitter in both
primary pump seal drain pressure and temperature.

Possible seal anomaly or vibration.

Science Applications International Corporation

'//!

Feature

No Fiat 951A

No Flat 1187

Diff 951A
(current),
(previous)

Diff 1187,
(current),

(previous) temPl

Table 9. Primary Pump Seal

Appendix B - Tables x/i/

Feature

Diff 233A,
(current),
(previous)

temp 2

Criteria

at thermal equilibrium

at Iox seal equilibrium

at thermal equilibrium

1187 at Iox seal
equilibrium, 233A at
thermal equilibrium
temp 1 * temp 2 < 0

Postulate

Primary pump seal drain pressure is not
flat at t --. Possible sensor or seal

anomaly.

Primary pump seal drain temperature is
not flat at t =. May be turbine

temperature effect, sensor, or seal
anomaly.

Primary pump seal drain pressure differs
from that of previous test.

Primary pump seal drain temperature
differs from previous test with sign
opposite from turbine temperature

change.

Feature

Erratic 211

Erratic 211

Spike 211

Spike 211

Table 10.

Feature

Erratic 212

Spike 212

Spike 212

Erratic 212

Intermediate Seal Purge Pressure

Postulate

Intermediate seal purge pressure appears erratic or spiking at t =.
Possible purge system, seal, or sensor anomaly.

Science Applications International Corporation

r

i _i I :_••_i i!

/

i/_!:• i I

Peature

Spike 90 [cut,cut+lO0.O]

Spike 190 [cut,cut+lO0.O}

Erratic 90 [cut,cut+lO0.O]

Erratic 190 [cut,cut+lO0.O]

Spike 24 [cut,cut+lO0.O]

Erratic 24 [cut,cut+lO0.O]

Table 11. Shutdown

Appendix B - Tables xi v

Postulate

HPOTP pump discharge pressure shows spike during shutdown at t =
b. Possible momentary shaft hangup.

HPOTP pump discharge pressure erratic during shutdown. Possible
anomaly.

HPOTP turbine discharge pressure shows spike during shutdown at t
=. Possible momentary shaft hangup.

HPOTP turbine discharge pressure erratic during shutdown. Possible
anomaly.

• • 4

realure

Bistability

feature

Redline

Table 12. Preburner Pump Bistability

Postulate

PBP bistability at thrust level.

Table 13. Redline Violations

Postulate

Redline violated: 'sensor' 'limit type' starting at t =.

Science Applications International Corporation

•ii :̧_ii•_̧•::

i ,i •

: _ i_ ¸ ;

ii, _

Appendix C - GUI Features xv

Appendix C- GUI Features

Using a Mouse

The mouse and the pointer which appears on the screen coexist. Moving the mouse causes
the pointer to move. Clicking the mouse button activates whichever object lies under the
graphical pointer, such as a window or button.

To move the pointer: move the mouse.

To click: press and release the mouse button quickly (usually the far left button).

To double-click: press and release a mouse button twice quickly (usually the far left button).

Selecting a Menu Option

The mouse is also used to select a menu option. Before being activated, a menu appears
like a button. Once activated, a list of options appears.

To activate a menu: move the pointer to the desired menu, then press and hold down the left
mouse button.

To select a menu option: while the mouse button is still held down, move the pointer to the

desired option and then release the mouse button. Or if you wish, you may click and release to

display the menu, then place the cursor on the desired option and click again.

Working With Windows

Once selected (or activated), a window may be moved, resized, shuffled, closed,
iconified, and scrolled. Sometimes, there are multiple windows on the screen each
providing a view into a different application process.

To activate a window: move the pointer anywhere on the window and click.

To move a window: move the pointer to the upper bar of the window (called the title bar); press

and hold down the mouse button; move the mouse to the desired location while stillholdLqg down
the mouse button; release the button.

To resize a window: press and hold down the left or center mouse button the the lower r_ght

comer of the window frame; move the mouse outward for a larger window or Award for a smal/er

window whik_stiffholding the mouse button down; release the button when the image of the window

(represented by a transparent rectangle) has the desired size.

Science Applications International Corporation

'/ :i¸ , !i_i i _ I

. •_ . , ,t r ¸

_/i ¸¸__•:_i•

Appendix C - GUI Features

To shuffle windows: only one window can be active when there are multiple windows on the

screen. Currentlyinactivewindows appear faded incompa/Jsonto theactive v_ndow. Clickon a
window other than the activewindow

To use a scroll bar: when more material is available for display than fits in a window, a scroll

bar may appear alongthe edge of a window. Clickon the darkenedportionof thescmll bar to move

up ordown onepage; move the pointeron topof the slider,press, hold,and move the mouse to

scrollincremental_.

To close a window: press the mouse button in the upper leftcomer of the window and hold;
move the pointer to the "Close" optionand release the button.

To iconffy a window: click the iconify window button (the leftsquare with a dot in the center in

the upper fight comer).

xvi

Science Applications International Corporation

:_i - /

it .

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Publicreportingburden for this collectionof informationis estimated,to.average 1.hourper response, includingthe time for reviewinginstructions,searchingexistingdata sources,
gamenng ano mamxainmgme oala neeoea, ano completingano rewewmgthe collecton of information. Send comments regardingthis burden estimate or any other aspect of this
collectionof information,includingsuggestionsfor reducingthisburden, to WashingtonHeadquartersServices, Directoratefor InformationOperationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-4302, and to the Office of Managementand Budget,Paperwork ReductionProject (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1994
4. J I I LE AND SUBTITLE

Reusable Rocket Engine Turbopump Health Management System

6. AUTHOR(S)

Pamel_ Surko

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Science Applications International Corporation
10260 Campus Point Drive

San Diego, California 92121

9. SPONSORING/MONITORINGAGEI_ICYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Adminislration
Lewis Research Center

Cleveland, Ohio 44135-3191

11.

Final Contractor Report

5. FUNDING NUMBERS

WU-584--03-11

C-NAS3-25882

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9153

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA CR-195388

SUPPLEMENTARYNOTES

Project Manager, June Zakrajsek, Space Propulsion Technology Division, NASA Lewis Research Center, organization
code 5310, (216) 433-7470.

12a. DISTRIBUTION/AVAILABILITy STATEMENT

Unclassified - Unlimited

Subject Categories 15 and 20

12b. DISTRIBUTION CODE

13. AB_HACT (Maximum 200 words)

A health monitoring expert system software architecture has been developed to support condition-based health monitor-

ing of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer

turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input
the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or. 1 Hz. The system is invoked

after a test has been completed, and produces an analysis and an organized graphical presentation of the data with

important effects highlighted. The overall expert system architecture has been developed and documented so that expert

modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability,
and open system interfaces so that it may be used to analyze other engines as well.

14. SUBJECT TEHMS

Expert systems; Data reduction; Data processing

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

lg. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

90
16. PRICE CODE

A05

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39.-18
298-102

